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Theorem (Levin, Schnorr). X € 2% is Martin-Lof random iff
VnK(X [n)>n—O(1).

This version for Lebesgue measure can also be formulated for
arbitrary computable measures u:

Theorem (Levin, Schnorr). X € 2¢ is y-Martin-Lof random iff
Vi K(X [ ) 2 —log(a(X | 1)) — O(1).

Therefore: The possible growth rates of K for u-random
sequences are related to the structure of u.



Study how properties of u are reflected in the growth rates of K
for y-random sequences.

Study the growth rates of K for proper sequences, i.e., sequences
random for some computable measure w.

Study computable measures whose set of randoms is “small.”
(in a sense to be explained)



Preliminaries
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Measures and atoms

Definition. y is computable if 0 — u([o])) is a computable
real-valued function.

Definition. y is atomic if there is X € 2¢ with u({X})> 0.

m Then X is called an atom of u.

= Atoms,, is the set of all atoms of u.

Fact. Atoms of a computable measure yu are trivially y-random
and computable.

Definition. If u is not atomic, then it is continuous.



Complexity and properness




Complex sequences

Definition. X is complex if there is a computable order
h:w — w such that

VnK(X [n) > h(n).

Intuition. For complex sequences a certain Kolmogorov
complexity growth rate is guaranteed everywhere.
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Complexity and properness

Theorem (essentially Bienvenu, Porter).
If X €2¢ is y-Martin-L6f random for u computable and
continuous, then X is complex.

The converse is false, as there are complex non-proper sequences.

= Miller showed that there is a sequence of effective Hausdorff
dimension 1/2 that does not compute a sequence of higher
effective Hausdorff dimension.

= Such a sequence is clearly complex.

m If it computed any proper sequence, then it would compute an
MLR sequence (Zvonkin, Levin), contradiction.



Complexity and properness

However, there is a restricted converse for proper sequences.

Theorem (Hoélzl, Porter). Let X € 2% be proper. If X is
complex, then X € MLR , for some computable, continuous
measure (.

Proof idea. The complexity of X allows “patching” the measure
to remove the (non-complex) atoms.
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Semigenericity, avoidability,...

Definition (Bienvenu, Porter). NCR_,,,,, is the collection of
sequences that are not random with respect to any computable,

continuous measure.

Definition (Demuth). X € 2% is semigeneric if for every

II9 class 2 with X € 2, 2 contains a computable member.
Definition (Miller). X € 2 is avoidable if there is a partial
computable function p such that for every computable set M and
every c.e. index e for M, we have p(e) | and X [p(e) # M [ p(e).

Definition (Miller). X is hyperavoidable if X is avoidable with
total p.
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Theorem (Ho6lzl, Porter). Let X € 2% be proper, non-computable.

X¢NCR,,,, ==  Xcomplex = X not semigeneric

H H

X hyperavoidable == X avoidable
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Theorem (Ho6lzl, Porter). Let X € 2% be proper, non-computable.

X¢NCR,,,, <=  Xcomplex <= X notsemigeneric

H H

X hyperavoidable <= X avoidable
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Complexity in a uniform sense?

Question. For given computable and continuous y, is there a
single computable order function witnessing complexity of
u-random sequences?



Definition (Reimann, Slaman). For u continuous, the
granularity of u is defined as

g, n—min{l: Vo e2': u([e] <27}

Theorem (H6lzl, Porter). If u is continuous and computable,
there is a computable order 4 such that |h(rn)— g;l(n)| <0O(1)
and for every X € MLR ,, K(X [7) > h(n).

g;l provides a global lower bound for the initial segment
complexity of every u-random sequence.

g, itself is in general not computable, but g;l can be replaced by
the computable 4 above.
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Atomic measures
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Removability of atoms

Question. If we have a computable, atomic measure u such that
VX €2°(XeMLR,\ Atoms, = X is complex),
is there a computable, continuous measure v such that
MLR ,\ Atoms, C MLR,?

Theorem (H6lzl, Porter). There is a computable, atomic
measure u such that

= every X € MLR,, \ Atoms, is complex but

m there is no computable, continuous measure v such that
MLR u \ Atoms 4 CMILR,.

Intuition. There are measures with non-removable atoms.
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Contrast between continuous and atomic measures

During the proof of the previous theorem we established that
unlike for continuous measures, for atomic measures there is
no “complexity in a uniform sense.”

That is, there is in general no uniform computable lower bound
for the K-growth rates of the non-atom y-random sequences.
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Contrast between continuous and atomic measures

Theorem, restated.
If X €2 is u-Martin-Lof random for u computable and
continuous, then X is complex.

Theorem (Ho6lzl, Porter). Every hyperimmune random
Turing degree contains a proper sequence that is both
1.0. complex and i.0. anti-complex.

The proof involves the construction of an atomic measure.
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Trivial and diminutive measures




Trivial and diminutive measures

Definition. u is trivial if y(Atoms,) = 1.
Definition.
= (Binns) € C 2% is diminutive if it does not contain a
computably perfect subclass.
u (Porter) Let ¢ be a computable measure, and let (%), be the
universal u-Martin-Lof test. Then we say that u is diminutive i
U is a diminutive IT9 class for every i.
Intuition. The collection of randoms is “small” for both types
of measures.

m The randoms for a trivial measure may be of two types:
countably many atoms measure 0 many non-atoms

m The set of randoms for a diminutive measure has strong effective
measure O (Higuchi, Kihara).



Diminutive measures are more general than trivial ones

Proposition (H6lzl, Porter). Every computable trivial
measure is diminutive.

Theorem (Hélzl, Porter). There is a computable diminutive
measure that is not trivial.

As a corollary to the proof, we obtain a priority-free proof of
the following known result.

Corollary (Kautz). There is a computable, non-trivial
measure u such that there is no AY, non-computable
XeMLR "



Thank you for your attention.
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