Randomness for computable measures, and complexity

> Rupert Hölzl 👲 Universität der Bundeswehr München

Joint work with Christopher P. Porter University of Florida Gainesville

I Theorem (Levin, Schnorr). $X \in 2^{\omega}$ is Martin-Löf random iff

 $\forall n \operatorname{K}(X \upharpoonright n) \ge n - O(1).$

2 This version for Lebesgue measure can also be formulated for arbitrary computable measures μ :

Theorem (Levin, Schnorr). $X \in 2^{\omega}$ is μ -Martin-Löf random iff

$$\forall n \operatorname{K}(X \upharpoonright n) \ge -\log(\mu(X \upharpoonright n)) - O(1).$$

Solution Therefore: The possible growth rates of K for μ -random sequences are related to the structure of μ .

- I Study how properties of μ are reflected in the growth rates of K for μ -random sequences.
- Study the growth rates of K for *proper* sequences, i.e., sequences random for *some* computable measure μ .
- Study computable measures whose set of randoms is "small." (in a sense to be explained)

Preliminaries

- **Definition.** μ is *computable* if $\sigma \mapsto \mu(\llbracket \sigma \rrbracket)$ is a computable real-valued function.
- **2** Definition. μ is *atomic* if there is $X \in 2^{\omega}$ with $\mu(\{X\}) > 0$.
 - Then X is called an *atom* of μ .
 - Atoms_{μ} is the set of all atoms of μ .
- **5** Fact. Atoms of a computable measure μ are trivially μ -random and computable.
- **4** Definition. If μ is not atomic, then it is *continuous*.

Definition. X is *complex* if there is a computable order $h: \omega \to \omega$ such that

 $\forall n \operatorname{K}(X \upharpoonright n) \ge b(n).$

Intuition. For complex sequences a certain Kolmogorov complexity growth rate is guaranteed everywhere.

■ Theorem (essentially Bienvenu, Porter). If $X \in 2^{\omega}$ is μ -Martin-Löf random for μ computable and continuous, then X is complex.

2 The converse is false, as there are complex non-proper sequences.

- Miller showed that there is a sequence of effective Hausdorff dimension ¹/₂ that does not compute a sequence of higher effective Hausdorff dimension.
- Such a sequence is clearly complex.
- If it computed any proper sequence, then it would compute an MLR sequence (Zvonkin, Levin), contradiction.

- **I** However, there is a restricted converse for proper sequences.
- **2** Theorem (Hölzl, Porter). Let $X \in 2^{\omega}$ be proper. If X is complex, then $X \in MLR_{\mu}$ for some computable, continuous measure μ .
- Proof idea. The complexity of X allows "patching" the measure to remove the (non-complex) atoms.

- Definition (Bienvenu, Porter). NCR_{comp} is the collection of sequences that are not random with respect to any computable, continuous measure.
- **Definition (Demuth).** $X \in 2^{\omega}$ is *semigeneric* if for every Π_1^0 class \mathscr{P} with $X \in \mathscr{P}$, \mathscr{P} contains a computable member.
- **Definition (Miller).** $X \in 2^{\omega}$ is *avoidable* if there is a partial computable function *p* such that for every computable set *M* and every c.e. index *e* for *M*, we have $p(e) \downarrow$ and $X \upharpoonright p(e) \neq M \upharpoonright p(e)$.
- Definition (Miller). X is *hyperavoidable* if X is avoidable with total p.

Theorem (Hölzl, Porter). Let $X \in 2^{\omega}$ be proper, non-computable.

Theorem (Hölzl, Porter). Let $X \in 2^{\omega}$ be proper, non-computable.

Question. For given computable and continuous μ, is there a single computable order function witnessing complexity of μ-random sequences?

Definition (Reimann, Slaman). For μ continuous, the *granularity of* μ is defined as

$$g_{\mu} \colon n \mapsto \min\{\ell \colon \forall \sigma \in 2^{\ell} \colon \mu(\llbracket \sigma \rrbracket) < 2^{-n}\}.$$

- **2** Theorem (Hölzl, Porter). If μ is continuous and computable, there is a computable order *h* such that $|h(n) g_{\mu}^{-1}(n)| \le O(1)$ and for every $X \in MLR_{\mu}$, $K(X \upharpoonright n) \ge h(n)$.
- **I** g_{μ}^{-1} provides a global lower bound for the initial segment complexity of every μ -random sequence.
- If g_{μ} itself is in general not computable, but g_{μ}^{-1} can be replaced by the computable *h* above.

Atomic measures

 \square

I Question. If we have a computable, atomic measure μ such that

$$\forall X \in 2^{\omega} (X \in \mathrm{MLR}_{\mu} \setminus \mathrm{Atoms}_{\mu} \Rightarrow X \text{ is complex}),$$

is there a computable, continuous measure v such that

$$MLR_{\mu} \setminus Atoms_{\mu} \subseteq MLR_{\nu}$$
?

- Theorem (Hölzl, Porter). There is a computable, atomic measure μ such that
 - every $X \in MLR_{\mu} \setminus Atoms_{\mu}$ is complex but
 - there is no computable, continuous measure v such that $MLR_{\mu} \setminus Atoms_{\mu} \subseteq MLR_{\nu}$.
- **Intuition.** There are measures with non-removable atoms.

During the proof of the previous theorem we established that unlike for continuous measures, for atomic measures there is no "complexity in a uniform sense."

That is, there is in general no uniform computable lower bound for the K-growth rates of the non-atom μ -random sequences.

Theorem, restated.

If $X \in 2^{\omega}$ is μ -Martin-Löf random for μ computable and continuous, then *X* is complex.

Theorem (Hölzl, Porter). Every hyperimmune random Turing degree contains a proper sequence that is both i.o. complex and i.o. anti-complex.

The proof involves the construction of an atomic measure.

Trivial and diminutive measures

Trivial and diminutive measures

- **Definition.** μ is *trivial* if $\mu(\text{Atoms}_{\mu}) = 1$.
- **2** Definition.
 - (Binns) $\mathscr{C} \subseteq 2^{\omega}$ is *diminutive* if it does not contain a computably perfect subclass.
 - (Porter) Let μ be a computable measure, and let $(\mathcal{U}_i)_{i \in \omega}$ be the universal μ -Martin-Löf test. Then we say that μ is *diminutive* if \mathcal{U}_i^c is a diminutive Π_1^0 class for every *i*.
- **Intuition.** The collection of randoms is "small" for both types of measures.
 - The randoms for a trivial measure may be of two types: countably many atoms measure 0 many non-atoms
 - The set of randoms for a diminutive measure has strong effective measure 0 (Higuchi, Kihara).

- Proposition (Hölzl, Porter). Every computable trivial measure is diminutive.
- **Theorem (Hölzl, Porter).** There is a computable diminutive measure that is not trivial.
- As a corollary to the proof, we obtain a priority-free proof of the following known result.

Corollary (Kautz). There is a computable, non-trivial measure μ such that there is no Δ_2^0 , non-computable $X \in MLR_{\mu}$.

Thank you for your attention.

arXiv 1510.07202, 10/2015, 28 pages