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Motivation

1 Theorem (Levin, Schnorr). X ∈ 2ω is Martin-Löf random iff

∀nK(X �n)≥ n−O(1).

2 This version for Lebesgue measure can also be formulated for
arbitrary computable measures µ:

Theorem (Levin, Schnorr). X ∈ 2ω is µ-Martin-Löf random iff

∀nK(X �n)≥− log(µ(X �n))−O(1).

3 Therefore: The possible growth rates of K for µ-random
sequences are related to the structure of µ.
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Goals

1 Study how properties of µ are reflected in the growth rates of K
for µ-random sequences.

2 Study the growth rates of K for proper sequences, i.e., sequences
random for some computable measure µ.

3 Study computable measures whose set of randoms is “small.”
(in a sense to be explained)
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Preliminaries2
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Measures and atoms

1 Definition. µ is computable if σ 7→µ(¹σº) is a computable
real-valued function.

2 Definition. µ is atomic if there is X ∈ 2ω with µ({X})> 0.
Then X is called an atom of µ.
Atomsµ is the set of all atoms of µ.

3 Fact. Atoms of a computable measure µ are trivially µ-random
and computable.

4 Definition. If µ is not atomic, then it is continuous.
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Complexity and properness3
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Complex sequences

1 Definition. X is complex if there is a computable order
h :ω→ω such that

∀nK(X �n)≥ h(n).

2 Intuition. For complex sequences a certain Kolmogorov
complexity growth rate is guaranteed everywhere.
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Complexity and properness

1 Theorem (essentially Bienvenu, Porter).
If X ∈ 2ω is µ-Martin-Löf random for µ computable and
continuous, then X is complex.

2 The converse is false, as there are complex non-proper sequences.
Miller showed that there is a sequence of effective Hausdorff
dimension 1/2 that does not compute a sequence of higher
effective Hausdorff dimension.
Such a sequence is clearly complex.
If it computed any proper sequence, then it would compute an
MLR sequence (Zvonkin, Levin), contradiction.
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Complexity and properness

1 However, there is a restricted converse for proper sequences.
2 Theorem (Hölzl, Porter). Let X ∈ 2ω be proper. If X is

complex, then X ∈MLRµ for some computable, continuous
measure µ.

3 Proof idea. The complexity of X allows “patching” the measure
to remove the (non-complex) atoms.
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Semigenericity, avoidability,...

1 Definition (Bienvenu, Porter). NCRcomp is the collection of
sequences that are not random with respect to any computable,
continuous measure.

2 Definition (Demuth). X ∈ 2ω is semigeneric if for every
Π0

1 class P with X ∈P , P contains a computable member.
3 Definition (Miller). X ∈ 2ω is avoidable if there is a partial

computable function p such that for every computable set M and
every c.e. index e for M, we have p(e)↓ and X �p(e) 6=M �p(e).

4 Definition (Miller). X is hyperavoidable if X is avoidable with
total p.
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... and randomness

Theorem (Hölzl, Porter). Let X ∈ 2ω be proper, non-computable.

X 6∈NCRcomp X complex

X hyperavoidable

X not semigeneric

X avoidable

B, P
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Complexity in a uniform sense?

1 Question. For given computable and continuous µ, is there a
single computable order function witnessing complexity of
µ-random sequences?



14/22

Granularity

1 Definition (Reimann, Slaman). For µ continuous, the
granularity of µ is defined as

gµ : n 7→min{` : ∀σ ∈ 2` : µ(¹σº)< 2−n}.

2 Theorem (Hölzl, Porter). If µ is continuous and computable,
there is a computable order h such that |h(n)− g−1

µ (n)| ≤O(1)
and for every X ∈MLRµ, K(X �n)≥ h(n).

3 g−1
µ provides a global lower bound for the initial segment

complexity of every µ-random sequence.
4 gµ itself is in general not computable, but g−1

µ can be replaced by
the computable h above.
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Atomic measures4



16/22

Removability of atoms

1 Question. If we have a computable, atomic measure µ such that

∀X ∈ 2ω (X ∈MLRµ \Atomsµ ⇒ X is complex),

is there a computable, continuous measure ν such that

MLRµ \Atomsµ ⊆MLRν?

2 Theorem (Hölzl, Porter). There is a computable, atomic
measure µ such that

every X ∈MLRµ \Atomsµ is complex but
there is no computable, continuous measure ν such that
MLRµ \Atomsµ ⊆MLRν .

3 Intuition. There are measures with non-removable atoms.



17/22

Contrast between continuous and atomic measures

1 During the proof of the previous theorem we established that
unlike for continuous measures, for atomic measures there is
no “complexity in a uniform sense.”

That is, there is in general no uniform computable lower bound
for the K-growth rates of the non-atom µ-random sequences.
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Contrast between continuous and atomic measures

1 Theorem, restated.
If X ∈ 2ω is µ-Martin-Löf random for µ computable and
continuous, then X is complex.

2 Theorem (Hölzl, Porter). Every hyperimmune random
Turing degree contains a proper sequence that is both
i.o. complex and i.o. anti-complex.

The proof involves the construction of an atomic measure.
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Trivial and diminutive measures5
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Trivial and diminutive measures

1 Definition. µ is trivial if µ(Atomsµ) = 1.
2 Definition.

(Binns) C ⊆ 2ω is diminutive if it does not contain a
computably perfect subclass.
(Porter) Let µ be a computable measure, and let (Ui)i∈ω be the
universal µ-Martin-Löf test. Then we say that µ is diminutive if
U c

i is a diminutive Π0
1 class for every i.

3 Intuition. The collection of randoms is “small” for both types
of measures.

The randoms for a trivial measure may be of two types:
countably many atoms measure 0 many non-atoms

The set of randoms for a diminutive measure has strong effective
measure 0 (Higuchi, Kihara).
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Diminutive measures are more general than trivial ones

1 Proposition (Hölzl, Porter). Every computable trivial
measure is diminutive.

2 Theorem (Hölzl, Porter). There is a computable diminutive
measure that is not trivial.

3 As a corollary to the proof, we obtain a priority-free proof of
the following known result.

Corollary (Kautz). There is a computable, non-trivial
measure µ such that there is no ∆0

2, non-computable
X ∈MLRµ.
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