The Denjoy alternative for computable functions

Rupert Hölzl

LIAFA, CNRS & Paris 7

Joint work with Laurent Bienvenu, Joseph Miller and André Nies

Paradigm

- In analysis, measure theory etc. there are statements that are shown to hold "almost everywhere".
- 2 Intuition. A randomly chosen real number would make the statement true.
- Using concepts from algorithmic randomness we can try to make this more precise.

Derivatives

1 Definition. The *slope* of f between two reals a, b is

$$S_f(a,b) = \frac{f(a) - f(b)}{a - b}.$$

2 Definition.

$$\overline{D}f(z) = \limsup_{h \to 0} S_f(z, z+h)$$
 and $\underline{D}f(z) = \liminf_{h \to 0} S_f(z, z+h)$

(where *h* ranges over positive and negative numbers)

3/19

The Denjoy-Young-Saks theorem

- **Definition.** We say that f satisfies the Denjoy alternative at x if
 - \blacksquare either the derivative of f at x exists
 - or $\overline{D}f(x) = +\infty$ and $\underline{D}f(x) = -\infty$.
- 2 Intuition. Either the derivative exists, or its existence fails in the worst possible way.
- **11 The Denjoy-Young-Saks theorem.** For *any* function f and for almost every x, the Denjoy alternative for f at x holds.

Almost everywhere?

- **Question.** Is a more precise statement than "almost everywhere" achievable?
- 2 In algorithmic randomness there is a hierarchy of effective notions of randomness; each giving rise to a measure 1 set.
- They differ in the strength of the means we have to detect patterns.
- 4 How much effective randomness is enough to make the Denjoy-Young-Saks theorem true?

Randomness reminder

- Martin-Löf randomness. Real is not random if covered by an effective sequence of c.e. sets, whose measure tends to 0 at a guaranteed minimum speed.
- **2** Weak 2-randomness. Ditto, but no speed guarantee.
- **3** Computable randomness. No computable martingale wins arbitrary amounts.

Demuth randomness

- **Definition.** A *Demuth test* is a sequence (\mathcal{U}_n) of effectively open sets such that there exists an ω -c.e. function $f: \mathbb{N} \to \mathbb{N}$ which for each n gives a c.e. index for a set of strings generating \mathcal{U}_n and such that for all n, $\lambda(\mathcal{U}_n) \leq 2^{-n}$.
- **Definition.** $x \in 2^{\omega}$ is called *Demuth random* if for every Demuth test (\mathcal{U}_n) , x belongs to only finitely many \mathcal{U}_n .

Difference randomness

- **Definition.** A difference test is a pair $((\mathcal{U}_n)_n, \mathcal{C})$ of a uniformly c.e. sequence $(\mathcal{U}_n)_n$ of open classes and a single effectively closed class \mathcal{C} such that for all n, $\lambda(\mathcal{U}_n \cap \mathcal{C}) \leq 2^{-n}$.
- **2 Definition.** $x \in 2^{\omega}$ is called *difference random* if for any difference test $((\mathcal{U}_n)_n, \mathcal{C})$ we have $x \notin \bigcap_n (\mathcal{U}_n \cap \mathcal{C})$.

Hierarchy

1 The following inclusions hold.

9/1

Computable real functions

- In order to be able to work effectively with functions and derivatives we need to make them effective.
- **2 Definition.** $f:[0,1] \to \mathbb{R}$ is computable (over the reals) if its value can be effectively approximated with arbitrary precision where the input is provided as an oracle.
- **Definition.** A real x is computable if it can be effectively approximated with arbitrary precision. Write $x \in \mathbb{R}_c$.
- **Definition.** $f: \mathbb{R}_c \to \mathbb{R}_c$ is said to be Markov computable if from a computable Cauchy name of $x \in \mathbb{R}_c$, one can effectively compute a computable Cauchy name for f(x).

Pseudoderivatives

- Markov computable functions are not necessarily defined on all reals, so $\overline{D}f(z)$ and Df(z) may be undefined.
- 2 Therefore define the following *pseudoderivatives*.
- 3 Definition.

$$Df(z) = \liminf_{b \to 0^+} \{S_f(a,b) \colon a,b \in \mathrm{dom}(f) \land a \le x \le b \land 0 < b-a \le b\}.$$

$$\widetilde{D}f(z) = \limsup_{b \to 0^+} \{ S_f(a,b) \colon a,b \in \mathrm{dom}(f) \land a \le x \le b \land 0 < b-a \le b \}.$$

(in the case of Markov computable *f* , dom(*f*) is dense)

The effectivized Denjoy alternative

- **Definition.** Let $f :\subseteq [0,1] \to \mathbb{R}$ be partial with dense domain. f satisfies the effectivized Denjoy alternative at x if
 - either $\widetilde{D}f(x) = Df(x)$
 - or $\widetilde{D}f(x) = +\infty$ and $\widetilde{D}f(x) = -\infty$.

Known results

- **1 Theorem (Demuth).** Demuth randomness of x is enough to make the effectivized Denjoy alternative at x true for all Markov-computable functions (**notation:** $x \in DA$).
- **2 Definition.** A real $z \in [0, 1]$ is called Denjoy random if for no Markov computable function g we have $Dg(z) = +\infty$.
- Theorem (Demuth, Miller, Nies, Kučera). T.f.a.e. for z.
 - z is Denjoy random.
 - \blacksquare z is computably random.
 - lacksquare For every *computable f* the Denjoy alternative holds at z.

Our first main result

- **1 Theorem.** Every difference random real belongs to DA.
- **2 Lemma.** Difference randomness implies Π_1^0 -non-porosity.
- **3 Lemma.** Let x be computably random and a Π_1^0 -non-porosity point. Then $x \in DA$.

Our second main result

- Theorem. DA is incomparable under inclusion with the set of Martin-Löf random reals.
- 2 Lemma. There is a real which is not Martin-Löf random but nonetheless satisfies the Denjoy alternative for all Markov computable functions.
- **3 Lemma.** There exists a Markov computable function f for which the Denjoy alternative does not hold at Chaitin's Ω .

Lebesgue density

■ **Definition.** Lebesgue lower density of a set $\mathscr{C} \subseteq \mathbb{R}$ at a point $x \in \mathbb{R}$.

$$\rho(x|\mathscr{C}) := \liminf_{\gamma, \delta \to 0^+} \frac{\lambda([x - \gamma, x + \delta] \cap \mathscr{C})}{\lambda([x - \gamma, x + \delta])}$$

2 Lebesgue density theorem. Let $\mathscr{C} \subseteq \mathbb{R}$ be measurable. Then $\rho(x|\mathscr{C}) = 1$ for all $x \in \mathscr{C}$ outside a set of measure 0.

A characterization of positive density

- **1 Theorem.** T.f.a.e. for $x \in \mathbb{R}$.
 - *x* is difference random.
 - x is Martin-Löf random and for every Π_1^0 class $\mathscr C$ with $x \in \mathscr C$ we have $\rho(x|\mathscr C) > 0$.
- 2 Remark. Franklin and Ng showed that this is equivalent to being Martin-Löf random and having incomplete Turing degree.
- Very recently, Day and Miller used this result to prove that K-trivial = ML-non-cuppable.

An open question about density

Remark. It is easy to see that

$$W2R \subseteq \{x \mid \forall \Pi_1^0 \mathcal{C} : x \in \mathcal{C} \Rightarrow \rho(x|\mathcal{C}) = 1\}.$$

Open question. Is W2R equal to this set?

Thank you for your attention.