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Abstract. A Martin-Löf test U is universal if it captures all non-Martin-Löf random sequences,
and it is optimal if for every ML-test V there is a c ∈ ω such that ∀n(Vn+c ⊆ Un). We study
the computational differences between universal and optimal ML-tests as well as the effects
that these differences have on both the notion of layerwise computability and the Weihrauch
degree of LAY, the function that produces a bound for a given Martin-Löf random sequence’s
randomness deficiency. We prove several robustness and idempotence results concerning the
Weihrauch degree of LAY, and we show that layerwise computability is more restrictive than
Weihrauch reducibility to LAY. Along similar lines we also study the principle RD, a variant of
LAY outputting the precise randomness deficiency of sequences instead of only an upper bound
as LAY.

1. Introduction

Hoyrup and Rojas [15] fix a universal Martin-Löf test and define a function to be layerwise
computable if it is computable on Martin-Löf random inputs when given what essentially amounts
to a bound for the input’s randomness deficiency as advice. The ML-test U = (Un)n∈ω that
Hoyrup and Rojas use to define layerwise computability has the special property that for every
ML-test V = (Vn)n∈ω there is a c ∈ ω such that ∀n(Vn+c ⊆ Un). Miyabe [19] studies these
special, so called optimal, tests. If U and V are two optimal ML-tests, then it is straightforward
to see that the notion of layerwise computability is the same when defined via U as it is when
defined via V . However, the following example (essentially due to Miyabe, though with a slightly
different proof) shows that there are universal ML-tests that are not optimal.

Example 1.1. Let U be any universal ML-test. Define a test V via Vn =
⋂
i≤n Un for all n ∈ ω,

thus making the test a descending chain. V is also a universal ML-test, so λ(Vn) 6= 0 for all n.
On the other hand limn λ(Vn) = 0. Therefore there are infinitely many n with λ(Vn+1) < λ(Vn).
Assume for the sake of argument that there are infinitely many n with λ(V2n+1) < λ(V2n), and
let I be the set of these n. (The case in which there are infinitely many n with λ(V2n) < λ(V2n−1)
is analogous.)

Define an ML-test W via Wn = V2n+1 for all n. Clearly W meets the effectivity and measure
conditions for being an ML-test. As

⋂
n∈ωWn =

⋂
n∈ω Vn =

⋂
n∈ω Un, W is also a universal

ML-test.
Fix any c ∈ ω. For any n ∈ I with n ≥ c, we have that

Un+c ⊇ Vn+c ⊇ V2n ) V2n+1 =Wn,

which implies that Un+c 6⊆ Wn.
That is, for every c there are infinitely many n with Un+c 6⊆ Wn. Thus W is a universal

ML-test that is not optimal. �

Miyabe [19] obtains a compelling computational difference between optimal ML-tests and
universal ML-tests: by a result of Merkle, Mihailović, and Slaman [18], there is a universal
ML-test U and a left-c.e. real α such that ∀n(λ(Un) = 2−nα). Miyabe proves that no optimal
ML-test is of this form.

Date: 29th April 2015.
Rupert Hölzl was supported by a Feodor Lynen postdoctoral research fellowship of the Alexander von

Humboldt Foundation and is supported by the Ministry of Education of Singapore through grant R146-000-184-
112 (MOE2013-T2-1-062). Paul Shafer is an FWO Pegasus Long Postdoctoral Fellow. He was also supported by
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This article presents further differences between optimal ML-tests and universal ML-tests.
If U is an optimal ML-test, then for every ML-test there trivially is a function f (in fact, a
computable function f) such that ∀n(Vf(n) ⊆ Un). In Section 3, we show that if U is universal
but not optimal, then such an f need not exist; and furthermore that there exist universal
ML-tests U and V such that functions f as above do indeed exist, but such that all of these f
are difficult to compute.

In Section 4, we ask if the notion of layerwise computability remains the same if we allow it
to be defined using any, possibly non-optimal, universal ML-test. The answer is negative. It
is possible to construct universal ML-tests that distort the randomness deficiencies assigned
by a given ML-test quite chaotically. Likewise, we study the difference between the class of
layerwise computable functions and the class of exactly layerwise computable functions, where
we say that a function on MLR is exactly layerwise computable if it is uniformly computable
given an ML-random sequence and its randomness deficiency (not merely an upper bound for
its randomness deficiency). We show that both classes are different by identifying a function
that is exactly layerwise computable but not layerwise computable.

Brattka, Gherardi and Hölzl [7] define and study the Weihrauch degree of LAY, a function
representing the mathematical task of determining an upper bound for the randomness deficiency
of a given MLR sequence. In particular, they investigate how LAY interacts with MLR—the
principle that generates sequences that are ML-random relative to its input—and the principle
CN—the choice principle on natural numbers. We continue the study of LAY in Section 5, where
we show that, unlike the notion of layerwise computability, the Weihrauch degree of LAY does
not depend on the choice of the universal ML-test used to define it. Moreover, we show that, up
to Weihrauch degree, the problem of exactly determining a ML-random sequence’s randomness
deficiency is equivalent to merely determining an upper bound for its randomness deficiency.
We show that the Weihrauch degree of LAY enjoys several idempotence properties, and we
investigate the complexity of sets that can be reduced to LAY.

Finally, in Section 6, we compare layerwise computability with Weihrauch-reducibility to LAY.
The results express that Weihrauch-reducibility to LAY encompasses a wider class of functions
than layerwise computability.

Several of the results in this article, particularly in Sections 5 and 6, were obtained independ-
ently by Davie, Fouché, and Pauly [9].

2. Preliminaries

2.1. Computability theory and algorithmic randomness. We typically follow Downey
and Hirschfeldt [11] and Nies [20], the standard references for algorithmic randomness. 2ω is
Cantor space, 2s is the set of binary strings of length s, and 2<ω =

⋃
s∈ω 2s is the set of finite

binary strings. For σ, τ ∈ 2<ω, we write σ � τ if τ is an extension of σ. We write σ ≺ τ if this
extension is strict. For σ ∈ 2<ω and X ∈ 2ω, we write σ ≺ X if σ is an initial segment of X. For
σ ∈ 2<ω, [σ] is the set {X ∈ 2ω : σ ≺ X}. For a set U ⊆ 2<ω, [U ] =

⋃
σ∈U [σ] is the open subset

of 2ω determined by U . For a tree T ⊆ 2<ω, [T ] is the set of infinite paths through T . One
makes the analogous definitions concerning the topology on Baire space (i.e., on ωω), though
our topological needs are almost exclusively confined to 2ω. Lebesgue measure on Cantor space
is denoted by λ. As usual, 〈·, ·〉 : ω2 → ω denotes the canonical computable and computably
invertible pairing function. We also use 〈·, ·〉 to denote pairs of elements from 2ω or ωω, coded in
the usual way.

(Φi)i∈ω is an effective list of all Turing functionals. For a Turing functional Φi, Φi,s(X)(n)
denotes the result of running Φi for s steps on input n when equipped with oracle X ∈ 2ω. If the
computation of Φi(X)(n) converges, we write Φi(X)(n)↓; if it converges in at most s steps we
write Φi,s(X)(n)↓; if it diverges we write Φi(X)(n)↑; and if it has not yet converged after s steps
we write Φi,s(X)(n)↑. We also follow the common convention that if Φi is given a finite string σ
as an oracle, then the computation Φi(σ)(n) is allowed to run for at most |σ| many steps. We
suppress the ‘(n)’ and write Φi(X) to denote the function computed by Φi when equipped with
oracle X. We sometimes suppress the ‘(X)’ and write Φi(n) when it is understood that X ≡ 0.



UNIVERSALITY, OPTIMALITY, AND RANDOMNESS DEFICIENCY 3

Subsets of ω are identified with their characteristic functions, and, for the purposes of supplying
a single number as an oracle, each n ∈ ω is identified with the corresponding singleton {n}.

Let (We)e∈ω be a standard enumeration of all c.e. sets. An open set U0 ⊆ 2ω is effectively
open (or c.e.) if the set {σ ∈ 2<ω : [σ] ⊆ U0} is c.e. Thus U0 is effectively open if and only if
there is a c.e. set We ⊆ 2<ω such that U0 = [We]. We often think of an effectively open set U0 as
being enumerated in stages by fixing a c.e. We such that U0 = [We] and defining U0,s to be [We,s],
where We,s is the finite set of strings enumerated in the first s stages of the enumeration of We.
Notice that U0,s is always a clopen subset of 2ω. A sequence of open sets (Ui)i∈ω is uniformly
effectively open (or uniformly c.e.) if the set {〈i, σ〉 : i ∈ ω ∧ σ ∈ 2<ω ∧ [σ] ⊆ Ui} is c.e.

Definition 2.1.

• A Martin-Löf test (or ML-test) is a uniformly c.e. sequence V = (Vi)i∈ω of subsets of 2ω

such that λ(Vi) ≤ 2−i for all i.
• A Martin-Löf test V is nested if ∀i(Vi+1 ⊆ Vi).
• A Martin-Löf test U is universal if, for every Martin-Löf test V,

⋂
i∈ω Vi ⊆

⋂
i∈ω Ui.

• A Martin-Löf test U is optimal if, for every Martin-Löf test V, ∃c∀i(Vi+c ⊆ Ui).
• A sequence X ∈ 2ω is Martin-Löf random (or ML-random) if there is no ML-test V with
X ∈

⋂
i∈ω Vi.

• We write MLR for the set of sequences X ∈ 2ω that are Martin-Löf random and MLR
for 2ω \MLR.

Every optimal ML-test is universal, and if U is a universal ML-test, then X ∈ 2ω is ML-random
if and only if X /∈

⋂
i∈ω Ui. Martin-Löf [17] defined the notions of ML-test and ML-randomness

and proved that universal, indeed optimal, ML-tests exist (see also [11, Theorem 6.2.5]). In the
same paper, Martin-Löf also introduced the concept of randomness deficiency, which can be
thought of as a measure of how long it takes before a random sequence actually begins to look
random. That is, since the randomness of a sequence according to Martin-Löf’s definition does
not change if a finite initial segment of that sequence is changed, there are random sequences
which do look extremely non-random on long initial segments, e.g., they might begin with 0n

for large n. The intuition is that the greater the randomness deficiency, the longer is this finite
initial segment of non-randomness.

Definition 2.2. If X ∈ MLR and U is a universal ML-test, then the randomness deficiency of
X relative to U is rdU (X) = min{i : X /∈ Ui}.

When the universal ML-test U is clear from context, we sometimes write rd in place of rdU .
In a few places we make use of effective reals. The following material and much more can be

found in [11, Chapter 5].

Definition 2.3. Let α ∈ [0, 1]. Then

• α is computable if {q ∈ Q : q < α} is computable,
• α is left-c.e. if {q ∈ Q : q < α} is c.e., and
• α is right-c.e. if {q ∈ Q : q > α} is c.e.

An α ∈ [0, 1] is computable if and only if it is both left-c.e. and right-c.e. if and only if there is a
computable sequence of rationals (qn)n∈ω such that ∀n(|α− qn| < 2−n). An α ∈ [0, 1] is left-c.e.
if and only if there is a computable sequence of rationals that is increasing and converges to
α. An α ∈ [0, 1] is right-c.e. if and only if 1− α is left-c.e. if and only if there is a computable
sequence of rationals that is decreasing and converges to α. The measure of an effectively open
subset of 2ω is a left-c.e. real, and the measure of its complement in 2ω is a right-c.e. real.

2.2. Layerwise computability. Hoyrup and Rojas [15] introduced the concept of layerwise
computability which captures functions that, while not necessarily computable, are computable
on MLR when given advice that essentially corresponds to an upper bound for the randomness
deficiency of the input sequence. They then employ this notion in the study of Birkhoff’s ergodic
theorem and Brownian motion, to give two examples [14,16]. Hoyrup and Rojas define layerwise
computability in a general computable probability space, but we present the definition only for
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Lebesgue measure on Cantor space for simplicity and because the phenomena we wish to study
are already present in this context. It is left open for future research whether more general
settings exhibit richer structural properties than the ones studied here. In particular, it would
be interesting to study the extent to which the results of Sections 5 and 6 generalize.

Definition 2.4 (Hoyrup and Rojas [15]). A set A ⊆ 2ω is effectively λ-measurable if there are
sequences of uniformly effectively open sets (Ui)i∈ω and (Vi)i∈ω such that 2ω \ Vi ⊆ A ⊆ Ui and
λ(Ui ∩ Vi) ≤ 2−i for all i ∈ ω.

Definition 2.5 (Hoyrup and Rojas [15]). Let W be a universal ML-test.

• A set A ⊆ 2ω is W-layerwise semi-decidable if there is a sequence of uniformly effectively
open sets (Ui)i∈ω such that A ∩ (2ω \Wi) = Ui ∩ (2ω \Wi) for all i ∈ ω.
• A set A ⊆ 2ω is W-layerwise decidable if both A and 2ω \ A are W-layerwise semi-

decidable.
• A function f : 2ω → 2ω is W-layerwise computable if there is a Turing functional Φ such

that (∀i)(∀X ∈ 2ω \Wi)(Φ(〈X, i〉) = f(X)).

Remark 2.6. When considering functions f : 2ω → ω (such as characteristic functions of subsets
of 2ω or randomness deficiency functions), it is equivalent to define f as being W-layerwise
computable if there is a Turing functional Φ such that (∀i)(∀X ∈ 2ω \Wi)(Φ(X)(i) = f(X)).

For a universal ML-test W, it is straightforward to show that a set A ⊆ 2ω is W-layerwise
decidable if and only if its characteristic function is W-layerwise computable. Furthermore,
effective λ-measurability and layerwise decidability coincide for optimal ML-tests.

Theorem 2.7 (Hoyrup and Rojas [15]). Let U be an optimal ML-test, and let A ⊆ 2ω. Then A
is effectively λ-measurable if and only if A is U-layerwise decidable.

2.3. The Weihrauch degrees. We refer the reader to Weihrauch [27] for a general reference
for computable analysis. The Weihrauch degrees are the degree structure induced by Weihrauch
reducibility. This reducibility was defined by Klaus Weihrauch and has been the subject of
intense study [1, 2, 13, 24–26]. Recently, it has been used to classify the computational difficulty
of solving specific mathematical tasks [3–6,10,12,21,22]. The work in this article was sparked
by the work in Brattka, Gherardi, and Hölzl [7].

Informally, assume that we have a black box that is given some input and produces some
output. In all cases but the trivial ones, the transformations performed by the black boxes are
non-computable. In full generality, inputs and outputs can be members of any two so-called
represented spaces, but in this article, an input is typically a ML-random sequence, and an
output is typically a single natural number bounding the randomness deficiency of the input
sequence.

We think of the transformation performed by a black box as solving some mathematical
problem A. That is, the input is an instance of A, and the output a solution to that instance.
We can then, given such a box, investigate whether we can also use it to solve some other
mathematical problem B. That is, we ask if it is possible to encode an instance of B into an
instance of A, obtain a solution to this A-instance using the black box, and finally decode the
solution to the A-instance into a solution to the original B-instance. This informal notion of
reducibility can be seen as a sort of many-one reducibility among mathematical problems. We
now give the formal definitions pertaining to the Weihrauch degrees.

Definition 2.8. A representation of a set X is a surjective partial function δ : ⊆ ωω → X. Call
(X, δ) a represented space.

The ‘⊆’ in ‘δ : ⊆ ωω → X’ emphasizes that the domain of δ may be a proper subset of ωω.
Sometimes we suppress the representation and write X in place of (X, δ) for the sake of readability.

Definition 2.9. Let f : ⊆ (X, δX)⇒ (Y, δY ) be a multi-valued partial function on represented
spaces. A function Γ: ⊆ ωω → ωω realizes f (or is a realizer of f , written Γ ` f) if δY ◦ Γ(p) ∈
f ◦ δX(p) for all p ∈ dom(f ◦ δX).
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The ‘⇒’ in ‘f : ⊆ (X, δX) ⇒ (Y, δY )’ emphasizes that the function is multi-valued. The
intuition behind these two definitions is that a representation allows us to use elements of Baire
space as codes for elements of other spaces and that a function between two such other spaces
can be represented as a realizer (that is, as a function from codes for elements of the input space
to codes for the corresponding elements of the output space).

Definition 2.10. Let f and g be two multi-valued functions on represented spaces. Then f is
Weihrauch reducible to g (f ≤W g) if there are Turing functionals Φ,Ψ: ⊆ ωω → ωω such that
Ψ ◦ 〈id,Γ ◦ Φ〉 ` f for all Γ ` g.

The intuition is that Φ pre-processes an input before handing it over to Γ and that Ψ post-
processes the output provided by Γ. In terms of the informal reducibility described in terms of
black boxes above, Γ is the black box, Φ performs the encoding, and Ψ performs the decoding.
Note that Ψ has access to the original input.

Definition 2.11. Let f and g be two multi-valued functions on represented spaces. Then f is
strongly Weihrauch reducible to g (f ≤sW g) if there are Turing functionals Φ,Ψ: ⊆ ωω → ωω

such that Ψ ◦ Γ ◦ Φ ` f for all Γ ` g.

Note that in strong Weihrauch reductions, Ψ does not have access to the original input.
Although we do not study the lattice structure of these degrees in this work, we mention that

the Weihrauch degrees form a distributive lattice by results by Brattka and Gherardi [5] and
by Pauly [22] and that the strong Weihrauch degrees form a lower semi-lattice by Brattka and
Gherardi [5]; whether the latter actually form a lattice is unknown.

Finally, we introduce the operations on multi-valued functions that we study in Section 5.

Definition 2.12. Let f : ⊆ X ⇒ Y and g : ⊆ W ⇒ Z be multi-valued functions. The
product of f and g is the multi-valued function f × g : ⊆ X × W ⇒ Y × Z defined by
(f × g)(x,w) = f(x)× g(w).

The parallelization of a function f is the infinite product of f with itself.

Definition 2.13. Let f : ⊆ X ⇒ Y be a multi-valued function. The parallelization of f is the

multi-valued function f̂ : ⊆ Xω → Y ω defined by f̂((xi)i∈ω) = (f(xi))i∈ω.

Definition 2.14. Let f : ⊆ Y ⇒ Z and g : ⊆ X ⇒ Y be multi-valued functions. Then
f ◦ g : ⊆ X ⇒ Z is the composition of f and g. Note that since f and g can be partial the
following careful definition is needed.

dom(f ◦ g) = {x ∈ X : g(x) ⊆ dom(f)} and
(f ◦ g)(x) = {z ∈ Z : (∃y ∈ Y )(z ∈ f(y) ∧ y ∈ g(x))}.

The compositional product of two Weihrauch degrees was introduced by Brattka, Gherardi,
and Marcone [6]. The intuition is that the computational product of f and g describes the
maximum complexity of a function that can be computed by calling g, making an additional
computation, and then calling f .

Definition 2.15. Let f and g be two multi-valued functions. The compositional product of f
and g is the Weihrauch degree

f ∗ g = sup{f0 ◦ g0 : (f0 ≤W f) ∧ (g0 ≤W g)},

where the supremum is with respect to ≤W.

Brattka and Pauly [8] prove that f ∗ g is well-defined on the Weihrauch degrees and that the
supremum is in fact a maximum. Trivially, f × g ≤W f ∗ g. Brattka, Gherardi, and Marcone [6]
also define the strong compositional product ∗s in the strong Weihrauch degrees by replacing
≤W with ≤sW in the definition of ∗ and taking the supremum with respect to ≤sW. At the time
of this writing it is unknown whether or not the strong compositional product of two strong
Weihrauch degrees always exists.
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3. Non-optimal universal Martin-Löf tests

Every optimal ML-test is universal. In fact, if U is an ML-test such that, for every ML-test V ,
∀i∃j(Vj ⊆ Ui), then U is universal. However, there are a universal ML-test U and an ML-test V
such that ∃i∀j(Vj * Ui).

Lemma 3.1. There are an effectively open set W0 and a ML-test V such that MLR ⊆ W0 but
∀i(Vi *W0).

Proof. Let U be a universal ML-test, and let (U2,s)s∈ω be an enumeration of the basic open sets
in U2. Define a sequence (σs)s∈ω by letting each σs ∈ 2<ω be the first string of length ≥ s+ 2
such that [σs] is disjoint from U2,s ∪

⋃
t<s[σt]. Enumerate in stages the effectively open set W ′0

by W ′0,s = U2,s \
⋃
t<s[σt].

We claim that then W ′0 = U2 \
⋃
s∈ω[σs]. To see this, observe on the one hand that if X ∈ W ′0,

then X ∈ U2,s \
⋃
t<s[σt] for some s ∈ ω. If X ∈ [σt] for a t ≥ s, then X witnesses that

∅ 6= U2,s ∩ [σt] ⊆ U2,t ∩ [σt], contradicting that σt was chosen so that [σt] is disjoint from U2,t.
Thus X ∈ U2 \

⋃
s∈ω[σs]. On the other hand, if X ∈ U2 \

⋃
s∈ω[σs], then clearly there is an s ∈ ω

such that X ∈ U2,s \
⋃
t<s[σt]. Hence X ∈ W ′0.

Let W0 =W ′0 ∪
⋃
s∈ω([σs] ∩ U|σs|+1) and, for each i ∈ ω, let Vi = [σi]. V is a ML-test because

λ(Vi) = λ([σi]) = 2−|σi| ≤ 2−(i+2). To see that MLR ⊆ W0, consider X ∈ MLR =
⋂
i∈ω Ui.

If X ∈ [σs] for some s ∈ ω, then X ∈ [σs] ∩ U|σs|+1 ⊆ W0. If not, then X ∈ W ′0 ⊆ W0. In

either case, X ∈ W0, as desired. To see that ∀i(Vi * W0), observe that Vi = [σi] and that
[σi] ∩W0 = [σi] ∩ U|σi|+1. Thus

λ(Vi ∩W0) ≤ λ(U|σi|+1) ≤ 2−(|σi|+1) < 2−|σi| = λ(Vi),
so Vi *W0. �

Theorem 3.2. There are ML-tests U and V such that U is universal but ∃i∀j(Vj * Ui).

Proof. Let W0 and V be as in Lemma 3.1, let U be any universal ML-test, and replace U0 by W0.
U remains universal because MLR ⊆ W0, and i = 0 witnesses ∃i∀j(Vj * Ui). �

Remark 3.3. The ML-test V constructed in the proof of Lemma 3.1 satisfies
⋂
i∈ω Vi = ∅. This

is not necessary because we could let V ′ be any ML-test and replace each Vi by Vi+1 ∪ V ′i+1.
Hence the ML-test V in Lemma 3.1 and Theorem 3.2 may be taken to be universal or even
optimal.

On the other hand, if U and V are ML-tests such that ∀i∃j(Vj ⊆ Ui), then there is a function
f ≤T 0′′ such that ∀i(Vf(i) ⊆ Ui). This is because determining whether or not [Wi] ⊆ [Wj ] for
given i, j ∈ ω is 0′′-computable uniformly in i and j. Thus, if U and V are ML-tests such that
∀i∃j(Vj ⊆ Ui), then 0′′ can compute a function f such that ∀i(Vf(i) ⊆ Ui) by, given i, searching
for a j such that Vj ⊆ Ui. The next theorem states that computing such an f requires 0′′ in
general.

Theorem 3.4. There are ML-tests W and V such that

(i) W is universal,
(ii) ∀i∃j(Vj ⊆ Wi), and

(iii) if f : ω → ω satisfies ∀i(Vf(i) ⊆ Wi), then f ≥T 0′′.

Proof. By the following (well-known) claim, it suffices to construct W and V such that every f
satisfying ∀i(Vf(i) ⊆ Wi) also satisfies

∀e(∃nΦe(n)↑→ (∃n ≤ f(e))Φe(n)↑).(†)

Claim. Suppose f : ω → ω satisfies (†). Then f ≥T 0′′.

Proof of claim. First we show that f ≥T 0′. To determine whether or not Φe(e)↓, generate an
index i such that ∀n(Φi(n)↓↔ Φe,n(e)↑). Then Φe(e)↓ if and only if (∃n ≤ f(i))Φe,n(e)↓. This
shows that f ≥T 0′. Now we readily see that f ≥T 0′′ as well because Φe is total if and only if
(∀n ≤ f(e))Φe(n)↓, and this latter predicate is f -computable because f ≥T 0′. �
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Let U be an optimal ML-test. We simultaneously enumerate W and V in stages. For each i,
initialize ni,0 = 0 and ei,0 = i+ 1. At stage 〈i, s〉, proceed as follows.

• If Φi,s(ni,s)↑, then enumerate Uei,s,s into Wi, set ni,s+1 = ni,s, and set ei,s+1 = ei,s.
• If Φi,s(ni,s)↓, then enumerate Ui+1,s into Wi. Let σ be the first string such that [σ] is

disjoint from Wi and that (∀j ≤ ni,s)(λ(Vj ∪ [σ]) < 2−j). Enumerate [σ] into Vj for each
j ≤ ni,s, set ni,s+1 = ni,s + 1, and set ei,s+1 = max(ei,s, |σ|) + 1.

It is easy to see that ∀i(λ(Vi) ≤ 2−i). To see that ∀i(λ(Wi) ≤ 2−i), fix i and observe that
Wi ⊆

⋃
e≥i+1 Ue and hence that λ(Wi) ≤

∑
e≥i+1 λ(Ue) ≤

∑
e≥i+1 2−e = 2−i. Thus (Wi)i∈ω and

(Vi)i∈ω are indeed ML-tests. Furthermore, we have that ∀i∃j(Uj ⊆ Wi). Fix i. If ∃nΦi(n) ↑,
then ni = lims ni,s exists and is the least such n, ei = lims ei,s exists, and Uei ⊆ Wi. If ∀nΦi(n)↓,
then Ui+1 ⊆ Wi. The fact that U is an optimal ML-test now immediately implies that W is
universal and that ∀i∃j(Vj ⊆ Wi).

To finish the proof, it remains to show (iii). For this we argue that each f as in (iii) has
property (†). To see this, it suffices to show, for each i, that if n is least such that Φi(n)↑, then
(∀j < n)(Vj * Wi). If this is the case, then any f with ∀i(Vf(i) ⊆ Wi) must have f(i) ≥ n,
thereby bounding the first place of divergence n of Φi as required by (†).

So fix i, suppose that n is least such that Φi(n)↑, and assume n > 0 (for if n = 0 the desired
property trivially holds). Then n = lims ni,s, and there is a stage 〈i, s〉 at which ni,s = n − 1
and Φi,s(ni,s)↓. At this stage we enumerate a [σ], disjoint from what has been enumerated into
Wi so far, into Vj for every j ≤ n − 1. From this stage on, we enumerate Uei into Wi, where
ei = lims ei,s > |σ|. It follows that [σ] *Wi (because λ([σ]) > λ([σ] ∩Wi)) and therefore that
(∀j < n)(Vj *Wi). �

Remark 3.5. In fact, the universal ML-test W constructed in Theorem 3.4 has the following
properties.

• If U is any ML-test, then ∀i∃j(Uj ⊆ Wi).
• If U is an optimal ML-test and f : ω → ω is a function such that ∀i(Uf(i) ⊆ Wi), then
f ≥T 0′′.

4. Layerwise computability depends on the ML-test

Let U and V be universal ML-tests. If there is a computable function f : ω → ω such that
∀i(Vf(i) ⊆ Ui), then every V-layerwise computable function is also U-layerwise computable. In
particular, if U is an optimal ML-test, then every V-layerwise computable function is U -layerwise
computable; and if U and V are both optimal ML-tests, then a function is U -layerwise computable
if and only if it is V-layerwise computable. However, the results of the previous section show
that in general a function f : ω → ω such that ∀i(Vf(i) ⊆ Ui) need not exist at all. Moreover,
there are cases in which such functions do exist but are necessarily difficult to compute.

This situation raises the question of whether or not there are a universal ML-test U and a
(necessarily non-optimal) universal ML-test V such that some function is U -layerwise computable
but not V-layerwise computable. We show that such ML-tests indeed exist. Let U be an optimal
ML-test. Recall from Theorem 2.7 that a set is effectively λ-measurable if and only if it is
U -layerwise decidable. We will show that if a universal ML-test V is not optimal then effectively
λ-measurable sets need not be V-layerwise decidable.

Theorem 4.1. There are an effectively λ-measurable set A ⊆ 2ω and a universal ML-test W
such that A is not W-layerwise decidable.

Proof. The idea of the proof is to build A in such a way that no functional Φi is a W-layerwise
computation procedure for the characteristic function of A. We achieve this by waiting for
Φi(·)(i) to converge to either 0 or 1 on some [σ]. In the first case we put [σ] into A, and in the
second case we ensure that [σ] is never put into A. Then [σ] witnesses the failure of Φi.

We simultaneously enumerate the ML-test (Wi)i∈ω and compute two sequences (INs)s∈ω and
(OUTs)s∈ω of finite sets of strings from which we define the effectively λ-measurable set A.
In fact, A will be an effectively open set. Throughout the construction, we maintain that
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λ(Wi) ≤ 2−i−4 for all i ∈ ω and that λ([INs]) ≤ 1/16, λ([OUTs]) ≤ 1/16, and [INs]∩ [OUTs] = ∅
for all s ∈ ω.

Let Y be any nested universal ML-test. Initialize Wi,0 = ∅ for each i ∈ ω, IN0 = OUT0 = ∅,
and ei,0 = i+4 for each i ∈ ω. At stage s = 〈i, t〉, check if t is least such that there is a sequence of
distinct strings (σj)j<n from 2t such that λ(

⋃
j<n[σj ]) ≥ 1/2 and (∀j < n)(Φi(σj)(i)↓< 2). If t is

indeed least, search for the first σ ∈ 2<ω such that Φi(σ)(i)↓< 2, [σ]∩(Wi,t∪ [INs]∪ [OUTs]) = ∅,
and λ([σ]) ≤ 2−s−5. Such a σ must exist because the measures of Wi,t, [INs], and [OUTs]
are all ≤ 1/16. Set ei,s+1 = max(ei,s, |σ|) + 1. If Φi(σ)(i) = 0, set INs+1 = INs ∪{σ} and
OUTs+1 = OUTs. If Φi(σ)(i) = 1, set INs+1 = INs and OUTs+1 = OUTs ∪{σ}. If no sequence
(σj)j<n as above was found for this t or if t is not least, set ei,s+1 = ei,s, INs+1 = INs, and
OUTs+1 = OUTs. In either case, put Wi,t+1 =Wi,t ∪ Yei,t+1,t.

The above procedure defines the ML-test W and the sequences (INs)s∈ω and (OUTs)s∈ω.
W is indeed an ML-test because (by the nestedness of Y) ∀i(Wi ⊆ Yi+4). Hence ∀i(λ(Wi) ≤
λ(Yi+4) ≤ 2−(i+4)). To see that W is universal, it suffices to notice that, for all i, the limit
ei = lims ei,s exists because ei,s 6= ei,s+1 for at most one s. This implies that ∃j(Yj ⊆ Wi), from
which the universality of W follows from the universality of Y.

LetA =
⋃
s∈ω[INs]. We show thatA is effectively λ-measurable. Let Ui = A for each i ∈ ω, and

let Vi = 2ω \ [INi] for each i ∈ ω. Then Ui ∩Vi = (
⋃
s∈ω[INs]) \ [INi]. At any stage s, at most one

σ enters INs, and such a σ satisfies λ([σ]) ≤ 2−s−5. Thus λ(Ui∩Vi) ≤
∑

s>i 2−s−5 = 2−i−5 ≤ 2−i,
so (Us)s∈ω and (Vs)s∈ω witness that A is effectively λ-measurable. It is also easy to see that
[INs] and [OUTs] are disjoint for each s ∈ ω. That the measures of [INs] and [OUTs] are ≤ 1/16
for each s ∈ ω is because at each stage s there is at most one σ added to INs or OUTs, the
corresponding [σ] has measure at most 2−s−5, and

∑
s≥0 2−s−5 = 1/16.

Finally, we show that A is not W-layerwise decidable. Suppose for a contradiction that Φi

witnesses that A isW-layerwise decidable, and let Ki = 2ω \Wi. Then (∀X ∈ Ki∩A)(Φi(X)(i) =
1) and (∀X ∈ Ki \ A)(Φi(X)(i) = 0). As λ(Ki) ≥ 1 − 2−i−4 ≥ 1/2, there is a stage s = 〈i, t〉
where t is least such that there is an n ∈ ω and a sequence of strings (σj)j<n from 2t such that
λ(
⋃
j<n[σj ]) ≥ 1/2 and (∀j < n)(Φ(σj)(i)↓< 2). Thus at stage s we found a string σ such that

either Φi(σ)(i) = 0, in which case we added σ to INs+1; or Φi(σ)(i) = 1, in which case we added
σ to OUTs+1. Regardless of the choice of σ, we have that [σ] ∩ Ki 6= ∅ because [σ] was chosen
disjoint fromWi,t, and a set of measure at most λ([σ])/2 was enumerated intoWi from stage t+1
on. If Φi(σ)(i) = 0, then σ ∈ INs+1, so [σ] ⊆ A. Then any X ∈ [σ] ∩ Ki gives the contradiction
X ∈ Ki ∩ A but Φi(X)(i) = 0. On the other hand, if Φi(σ)(i) = 1, then σ ∈ OUTs+1, in which
case [σ] ⊆ 2ω \ A. Then any X ∈ [σ] ∩ Ki gives the contradiction X ∈ Ki \ A but Φi(X)(i) = 1.
Therefore A is not W-layerwise decidable. �

Corollary 4.2. The notion of layerwise computability depends on the universal ML-test. That
is, there are universal ML-tests U and W and a function F that is U-layerwise computable but
not W-layerwise computable.

Proof. Let U be an optimal ML-test, let W and A be as in Theorem 4.1, and let F be the
characteristic function of A. A is effectively λ-measurable, therefore A is U -layerwise decidable
and F is U-layerwise computable. However, A is not W-layerwise decidable, so F is not
W-layerwise computable. �

If f is U-layerwise computable via Φ, then Φ(〈X, i〉) is required to produce the correct value
of f(X) for every pair 〈X, i〉 with X ∈ 2ω \Ui. We show that more functions become U -layerwise
computable if the definition is relaxed to only require Φ(〈X, i〉) = f(X) for the least i such that
X ∈ 2ω \ Ui. This contrasts with the situation in the Weihrauch degrees, as we see in Section 5.

Definition 4.3. Let U be a universal ML-test. A function f : 2ω → 2ω is exactly U-layerwise
computable if there is a Turing functional Φ such that (∀X ∈ MLR)(Φ(〈X, rdU (X)〉) = f(X)).

The function rdU(X) is clearly exactly U-layerwise computable and thus is the natural
candidate for a function that is exactly U -layerwise computable but not U -layerwise computable.
We show that rdU (X) is indeed not U-layerwise computable, thus showing that the exactly U-
layerwise computable functions are always a strictly larger class than the U -layerwise computable
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functions. To implement the proof, we first show a basic lemma about summing uniformly
right-c.e. sequences of reals.

Lemma 4.4. If (rn)n∈ω is a uniformly right-c.e. sequence of reals such that ∀n(rn ∈ [0, 2−(n+1)]),
then r =

∑
n∈ω rn is right-c.e.

Proof. As any real α ∈ [0, 1] is right-c.e. if and only if 1− α is left-c.e., it suffices to show that
1− r is left-c.e. We have that

1− r = 1−
∑
n∈ω

rn =
∑
n∈ω

2−(n+1) −
∑
n∈ω

rn =
∑
n∈ω

(2−(n+1) − rn).

The sequence (2−(n+1) − rn)n∈ω is uniformly left-c.e., and ∀n(2−(n+1) − rn ∈ [0, 2−(n+1)]). It
is straightforward to show that

∑
n∈ω αn is left-c.e. whenever (αn)n∈ω is a uniformly left-c.e.

sequence of reals such that ∀n(αn ∈ [0, 2−(n+1)]). Thus, 1− r is left-c.e. �

Theorem 4.5. Let U be a universal ML-test. Then rdU is not U-layerwise computable.

Proof. Fix a uniformly computable sequence of trees (Ti)i∈ω such that ∀i([Ti] = 2ω \Ui). Suppose
for a contradiction that rdU is layerwise computable, and let Φ be such that Φ(X)(i) = rdU (X)
whenever X ∈ [Ti]. Define another uniformly computable sequence of trees (Si)i∈ω by

Si = {σ ∈ Ti : Φ(σ)(i)↓→ Φ(σ)(i) = i}.

We claim that ∀i([Si] = {X ∈ MLR : rdU(X) = i}). To see this, fix i ∈ ω and consider an
X ∈ MLR. If rdU(X) = i, then X ∈ [Ti] and, as Φ(X)(i) = rdU(X) = i, it must be that
∀n(Φ(X � n)(i)↓→ Φ(X � n)(i) = i). Hence X ∈ [Si]. If rdU(X) 6= i, then either X /∈ [Ti], or
X ∈ [Ti] and Φ(X)(i) = rdU (X) 6= i. If X /∈ [Ti], then clearly X /∈ [Si]. If Φ(X)(i) = rdU (X) 6= i,
then there is an n ∈ ω such that Φ(X � n)(i)↓ but Φ(X � n)(i) 6= i. Thus X /∈ [Si].

Let S = S0 ∪ S1. Note that [S] is non-empty because there must be an X ∈ MLR such that
rdU (X) is either 0 or 1. This is because since µ(U1) ≤ 1/2, there is some X 6∈ U1. Then either
U0 6= 2ω, in which case there is an X with rdU (X) = 0, or U0 = 2ω, in which case there is an X
with rdU (X) = 1.

We show that λ([S]) is a computable real, which contradicts the fact that the measure
of every non-empty Π0

1 set of ML-randoms is a ML-random real (see, for example, Nies [20,
Theorem 3.2.35]). To do this, we show that both λ([S]) and 1− λ([S]) are right-c.e. It is clear
that λ([S]) is right-c.e. because it is the measure of a Π0

1 set. To see that 1− λ([S]) is right-c.e.,
observe that ([Si])i∈ω is a partition of MLR, a set of measure 1. Hence 1−λ([S]) =

∑
i≥2 λ([Si]).

For i > 0, the fact that [Si] ⊆ Ui−1 implies that λ([Si]) ≤ λ(Ui−1) ≤ 2−(i−1). Lemma 4.4 thus
applies to the sequence (λ([Si]))i≥2, so 1− λ([S]) is indeed right-c.e. �

Corollary 4.6. For every universal ML-test U , there is a function that is exactly U-layerwise
computable but not U-layerwise computable. Thus the class of exactly layerwise computable
functions is always strictly bigger than the class of layerwise computable functions. �

We now prove the analog of Corollary 4.2 for exact layerwise computability: the notion of
exact layerwise computability also depends on the universal ML-test used to define it.

Definition 4.7. Let U be an ML-test. Define the stratification of U to be the ML-test U str

given by

U str
i = [1i+3] ∪ {1`0aX : ` ∈ ω ∧X ∈ Ui+1}

for each i ∈ ω.

U str
i can be enumerated by enumerating [1i+3], then by initiating the enumeration of the

cones [1`0aσ] whenever [σ] is enumerated as a subset of Ui+1. One readily checks that λ(U str
i ) ≤

2−(i+3) + λ(Ui+1) ≤ 2−(i+3) + 2−(i+1) ≤ 2−i. Thus U str is an ML-test.

Lemma 4.8. If U is a universal ML-test, then U str is a universal ML-test.
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Proof. Let U be a universal ML-test. Let X ∈ MLR. We need to show that X ∈
⋂
i∈ω U str

i . If

X is the sequence of all 1’s, then clearly X ∈
⋂
i∈ω U str

i . Otherwise, X = 1`0aY for some ` ∈ ω
and some Y ∈ MLR. As Y ∈ MLR, for every i ∈ ω there is a [τi] ⊆ Ui+1 with Y ∈ [τi]. Then,
by the definition of the stratification, X ∈ [1`0aτi] ⊆ U str

i . Thus X ∈
⋂
i∈ω U str

i . �

Lemma 4.9. Let U be a universal ML-test, and let X ∈ MLR be such that rdU (X) > 0. Then
∀`(rdUstr(1`0aX) = rdU (X)− 1).

Proof. Let d = rdU(X). Then X ∈ Ui for all i < d, and X /∈ Ud. Thus 1`0aX ∈ U str
i for all

i < d− 1, and 1`0aX /∈ U str
d−1. Hence rdUstr(1`0aX) = rdU (X)− 1. �

Theorem 4.10. The notion of exact layerwise computability depends on the universal ML-test.
That is, there are universal ML-tests U and W and a function F that is exactly U-layerwise
computable but not exactly W-layerwise computable.

Proof. Let V be any universal ML-test satisfying ∀i(λ(Vi) ≤ 2−(i+2)), and notice that Vstr also

satisfies ∀i(λ(Vstr
i ) ≤ 2−(i+2)). Define an ML-test U by U0 = Vstr

0 and

Ui+1 = Vstr
i+1 ∪ {1e0aX : Φe(e)↓ ∧1e0aX ∈ Vstr

i }

for each i ∈ ω. The Ui+1 can be enumerated by enumerating Vstr
i+1 while watching the computations

of the Φe(e). When a Φe(e) converges, Ui+1 begins enumerating [1e0] ∩ Vstr
i as well. For each

i ∈ ω, λ(Ui+1) ≤ λ(Vstr
i+1) + λ(Vstr

i ) ≤ 2−(i+3) + 2−(i+2) ≤ 2−(i+1). Thus U is a ML-test. U is

universal because Vstr is universal by Lemma 4.8.
Trivially, rdU is exactly U -layerwise computable. We show that rdU is not exactly Vstr-layerwise

computable. Suppose for a contradiction that Φ witness that rdU is exactly Vstr-layerwise
computable. Let X be ML-random and such that rdV(X) ≥ 2. We show that X ≥T 0′, which is
a contradiction because there are such X’s that do not compute 0′. Let d = rdV(X). Given e,
compute d′ = Φ(1e0aX)(d− 1). Output 0 if d′ = d− 1, and output 1 otherwise. By Lemma 4.9,
d− 1 = rdVstr(1e0aX), so by assumption Φ(1e0aX)(d− 1) must produce d′ = rdU (1e0aX). If
Φe(e)↑, then ∀i([1e0] ∩ Ui = [1e0] ∩ Vstr

i ), so d′ = rdU(1e0aX) = rdVstr(1e0aX) = d− 1. Thus
the procedure correctly outputs 0. Now suppose Φe(e)↓. Then (∀i < d− 1)(1e0aX ∈ Vstr

i ), so
(∀i ≤ d− 1)(1e0aX ∈ Ui). Thus d′ = rdU (1e0aX) > d− 1, so the procedure correctly outputs 1.
Thus X ≥T 0′, which gives the desired contradiction.

Let W = Vstr, and let F = rdU . Then F is exactly U-layerwise computable but not exactly
W-layerwise computable. �

5. Randomness deficiency and the Weihrauch degrees

In this section we study randomness deficiency in the context of the Weihrauch degrees. Our
results show that, unlike the situation with layerwise computability, randomness deficiency
considerations in the Weihrauch degrees are typically not sensitive to the choice of the universal
ML-test.

Definition 5.1. Let U be a universal ML-test.

• LAYU is the multi-valued function MLR⇒ ω defined by LAYU (X) = {i : X /∈ Ui}.
• RDU is the single-valued function MLR→ ω defined by RDU (X) = rdU (X).

We intend the natural representations of MLR and ω. MLR is represented by the identity
function on the domain MLR (i.e., the characteristic functions of ML-random sets). For ω, we
use the identification of n and {n}. Thus ω is represented by the function {n} 7→ n whose domain
is the set of characteristic functions of singleton subsets of ω. In full technicality, the realizers
of LAYU are exactly the functions Γ: MLR → 2ω such that, for all X ∈ MLR, Γ(X) = χ{i}
for some i with X /∈ Ui. For convenience, we often think of such a realizer Γ more simply as
a function MLR → ω such that (∀X ∈ MLR)(X /∈ UΓ(X)). Similarly, we think of a realizer
for RDU as the function rdU . Thus, in a sense, RDU is the same object as rdU , but for the
sake of conceptual clarity we use the notation ‘rdU ’ to refer to the U -randomness deficiencies of
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ML-random sets, and we use the notation ‘RDU ’ to refer to the mathematical task of determining
the U-randomness deficiencies of ML-random sets.

In contrast to Corollary 4.2, which states that the notion of layerwise computability depends
on the universal ML-test used to define it, the strong Weihrauch degree of LAYU is independent
of the universal ML-test U . Therefore we are henceforth justified in writing LAY in place of
LAYU in the context of both the Weihrauch degrees and the strong Weihrauch degrees.

Proposition 5.2. If U and V are universal ML-tests, then LAYV ≤sW LAYU .

Proof. We describe a Turing functional Φ such that Φ(MLR) ⊆ MLR and

(∀X ∈ MLR)(∀i)(i ∈ LAYU (Φ(X))→ i ∈ LAYV(X)).

Hence, by letting Ψ be the identity function, we have that LAYV ≤sW LAYU .
First define an auxiliary universal ML-test V ′ by V ′i =

⋃
j>i Vi for each i ∈ ω. It is easy to see

that V ′ is indeed a universal ML-test. Furthermore, V ′ has the property that if X ∈ MLR and
i > rdV ′(X), then i ∈ LAYV(X) (simply because by definition X /∈ V ′rdV′(X)

=
⋃
i>rdV′ (X) Vn).

Given X ∈ 2ω, to compute Φ(X), output the bits of X while searching for a stage s0 such that
X ∈ V ′0,s0 . If s0 is found, let σ0 be the output of Φ(X) so far, and search for a string τ0 such that

[σ0
aτ0] ⊆ U0 ∩ U1. Such a τ0 exists because there are non-ML-random sequences extending σ0,

and, as a universal test, U must capture all of these. Append τ0 to the current output of Φ(X)
(so that it becomes σ0

aτ0), and restart outputting the bits of X from the beginning. While
Φ(X) is outputting the bits of σ0

aτ0
aX, search for a stage s1 such that X ∈ V ′1,s1 . If s1 is

found, let σ1 be the output of Φ(X) so far, and search for a τ1 such that [σ1
aτ1] ⊆ U0 ∩ U1 ∩ U2,

which again exists because there are non-ML-random sequences extending σ1. Append τ1 to the
current output of Φ(X) (so that it becomes σ1

aτ1), and restart outputting the bits of X from
the beginning. Continue in this way, now searching for s2 such that X ∈ V ′2,s2 and so on. This
defines Φ.

Now consider an X ∈ MLR, and let v = rdV ′(X). As X /∈ V ′v, the output of Φ(X) is a
sequence of the form σaX, which is in MLR because X is in MLR. Moreover, the construction
clearly ensures that if i ≤ v, then Φ(X) ∈ Ui. Hence rdU(Φ(X)) > rdV ′(X). Therefore, if
i ∈ LAYU (Φ(X)), then i ≥ rdU (Φ(X)) > rdV ′(X), so i ∈ LAYV(X) as desired. �

Remark 5.3. Alternatively, we could have defined LAYU (X) to be any upper bound on rdU (X)

for a given X ∈ MLR. Thus for a universal ML-test U , let LAYalt
U be the multi-valued function

MLR ⇒ ω defined by LAYalt
U (X) = {i : i ≥ rdU(X)}. If U is a nested universal ML-test, then

the functions LAYU and LAYalt
U clearly coincide. On the other hand, if U is not nested, then

LAYU and LAYalt
U are not the same function, but they are still of the same strong Weihrauch

degree. To see this, observe that, in the last line of the proof of Proposition 5.2, the fact
that i ∈ LAYU(Φ(X)) only matters insofar as it implies that i ≥ rdU(Φ(X)). Thus for any

universal ML-tests U and V , we have that LAYV ≤sW LAYalt
U because the proof of Proposition 5.2

goes through with LAYalt
U in place of LAYU . As clearly LAYalt

U ≤sW LAYU , we have that

LAYU ≡sW LAYV ≡sW LAYalt
U ≡sW LAYalt

V for every pair U and V of universal ML-tests. Plainly
stated, given a universal ML-test U and an X ∈ MLR, determining an i such that X /∈ Ui is the
same as determining an upper bound for rdU (X), up to strong Weihrauch equivalence.

Furthermore, LAYU and RDV are Weihrauch-equivalent for any two universal ML-tests. Thus
in the context of the Weihrauch degrees we may unambiguously write either LAY or RD for any
function LAYU or RDU for any universal ML-test U .

Theorem 5.4. Let U and V be universal ML-tests. Then RDV ≡W LAYU .

Proof. First, we trivially have LAYV ≤sW RDV , and by Proposition 5.2 therefore

LAYU ≤sW LAYV ≤sW RDV .

For the other direction we prove RDV ≤W LAYU . The proof is very similar to that of
Proposition 5.2. Compute Φ and Ψ as follows. Φ(X) outputs the bits of X while searching for a
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stage s such that X ∈ V0,s. If s is found, let σ be the output of Φ(X) so far, and search for a

string τ such that [σaτ ] ⊆
⋂
i≤s Ui. Append τ to the current output of Φ(X) (so that it becomes

σaτ), and restart outputting the bits of X from the beginning. Now search for a stage s such
that X ∈ V1,s. If s is found, let σ be the output of Φ(X) so far, and search for a τ such that

[σaτ ] ⊆
⋂
i≤s Ui. Append τ to the current output of Φ(X) (so that it becomes σaτ), and restart

outputting the bits of X from the beginning. Continue in this way, now searching for an s such
that X ∈ V2,s and so on. This defines Φ. Ψ(〈X, k〉) outputs the least i such that X /∈ Vi,k.

To see that Φ and Ψ witness that RDV ≤W LAYU , consider an X ∈ MLR, and let v = rdV(X).
As X /∈ Vv, the output of Φ(X) is a sequence of the form σaX, which is in MLR because X is
in MLR. Hence Φ(X) is in the domain of LAYU . Let u = rdU (Φ(X)). The construction ensures
that u is large enough so that if i < v, then X ∈ Vi,u. Thus if k ∈ LAYU (Φ(X)), then k ≥ u, so
Ψ(〈X, k〉), the least i such that X /∈ Vi,k, is exactly v as desired. �

However, Theorem 5.4 cannot be improved to have ≡sW in place of ≡W.

Proposition 5.5. Let U and V be universal ML-tests. Then RDV �sW LAYU .

Proof. In light of Proposition 5.2, we may assume that U is nested. Suppose for a contradiction
that RDV ≤sW LAYU , and let Φ and Ψ witness the reduction. That is, if X ∈ MLR, then
Φ(X) ∈ MLR, and if n ≥ rdU (Φ(X)), then Ψ(n) = rdV(X). Now let X,Y ∈ MLR be such that
rdV(X) 6= rdV(Y ). Let n ≥ max(rdU(Φ(X)), rdU(Φ(Y ))). Then rdV(X) = Ψ(n) = rdV(Y ), a
contradiction. �

We were unable to determine whether or not RDU ≡sW RDV for every pair U and V of
universal ML-tests, so we leave it as a question.

Question 5.6. Let U and V be universal ML-tests. Does RDU ≡sW RDV hold?

Now we show that LAY enjoys various idempotence properties in the Weihrauch degrees and
in the strong Weihrauch degrees. These properties are ultimately due to the fact that, given
a universal ML-test U and two ML-random sequences X and Y , we can effectively generate a
ML-random sequence Z such that rd(Z) ≥ max{rd(X), rd(Y )}.
Proposition 5.7. LAY × LAY ≤sW LAY.

Proof sketch. Fix a nested universal ML-test U . Given X,Y ∈ 2ω, compute Φ(〈X,Y 〉) in
the style of Proposition 5.2 by copying the bits of X and increasing rd(Φ(〈X,Y 〉)) whenever
increases in rd(X) or rd(Y ) are noticed. Let Ψ be n 7→ 〈n, n〉. If X and Y are ML-random, then
Φ(X,Y ) = σaX for some σ for which rd(σaX) ≥ max(rd(X), rd(Y )). �

It follows that LAY × LAY ≡sW LAY.
LAY is also strongly Weihrauch-equivalent to its parallelization when restricting to nested

universal ML-tests and sequences of ML-random sets of uniformly bounded randomness deficiency.

Let U be a universal ML-test. Let L̃AYU be the restriction of L̂AYU to the domain consisting of
all (codes for) sequences (Xi)i∈ω in MLRω such that (∃n)(∀m ≥ n)(∀i)(Xi /∈ Um). Note that if
U is nested, this condition is equivalent to ∃n∀i(rdU (Xi) ≤ n).

Proposition 5.8. Let U be a universal ML-test. Then L̃AYU ≤sW LAY.

Proof sketch. Given
#—

X = (Xi)i∈ω in MLRω such that (∃n)(∀m ≥ n)(∀i)(Xi /∈ Um), we need only

have Φ(
#—

X) produce an ML-random set Y such that rd(Y ) ≥ n, for then we can let Ψ be the
functional that maps n to the constant sequence of ω copies of n.

Compute Φ(
#—

X) in the style of Proposition 5.2 by copying the bits of X0 and watching the
sets Xi enter the components of U in a dovetailing fashion. If at stage s = 〈i, n, t〉 we notice

that Xi ∈ Un,t but that [σs] *
⋂
m≤n Um,s (where σs is the string output by Φ(

#—

X) so far), then

extend σs to a σs
aτ such that [σs

aτ ] ⊆
⋂
m≤n Um, and restart outputting the bits of X0 from

the beginning. If indeed
#—

X satisfies (∃n)(∀m ≥ n)(∀i)(Xi /∈ Um), then by some stage Φ(
#—

X)
will have produced an output σ such that [σ] ⊆

⋂
m<n Um for a witnessing n. Thus in the end

Φ(
#—

X) = σaX0, where σaX0 ∈ MLR with rd(σaX0) ≥ n. �
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Theorem 5.9. LAY ∗ LAY ≤W LAY.

Proof. In fact we prove that LAY ∗ LAY ≤W RD× RD, from which the theorem follows because
RD× RD ≡W LAY × LAY ≡W LAY by Theorem 5.4 and Proposition 5.7.

Fix any nested universal ML-test U . Let f : ⊆ (R, δR)⇒ (S, δS) and g : ⊆ (Q, δQ)⇒ (R, δR)
be functions on represented spaces such that f, g ≤W LAY. Without loss of generality, assume
that dom(g) 6= ∅ and that for all x ∈ Q we have g(x) ⊆ dom(f). We show that f ◦g ≤W RD×RD.
To this end, let Φf , Ψf , Φg, and Ψg be Turing functionals such that Ψf ◦ 〈id,Γ ◦ Φf 〉 ` f and
Ψg ◦ 〈id,Γ ◦ Φg〉 ` g whenever Γ ` LAY. What we need are Turing functionals Φ and Ψ such
that Ψ ◦ 〈id,∆ ◦ Φ〉 ` f ◦ g whenever ∆ ` RD× RD.

Consider a realizer Γ ` LAY and anX ∈ dom(g◦δQ). Then Y = Φg(X) must be ML-random be-
cause it must be in dom(Γ). Likewise, Ψg(〈X, rd(Y )〉) ∈ dom(f ◦δR), so Z = Φf (Ψg(〈X, rd(Y )〉))
must be ML-random because it must be in dom(Γ).

The task of the functional Φ is, given X ∈ dom(g ◦ δQ), to produce a pair Φ(X) = 〈Y,W 〉,
where Y = Φg(X) and rd(W ) ≥ rd(Z). Φ(X) computes Y simply by running Φg(X). Φ(X)
computes W by watching rd(Y ) increase, simulating the computation of Z, and watching rd(Z)
increase. Specifically, to compute W given X, begin by setting dY = dZ = 0, and output the bits
of Φg(X) while searching for a stage at which either Φg(X) ∈ UdY or Φf (Ψg(〈X, dY 〉)) ∈ UdZ .
If Φg(X) ∈ UdY is witnessed, update dY = dY + 1. If Φf (Ψg(〈X, dY 〉)) ∈ UdZ is witnessed,
let σ be the initial segment of W that has been produced thus far, and search for a string τ
such that [σaτ ] ⊆ UdZ . Append τ to the output thus far (so that it becomes σaτ), update
dZ = dZ + 1, and restart outputting the bits of Φg(X) from the beginning. Ψ is the functional
〈X, 〈n,m〉〉 7→ Ψf (〈Ψg(〈X,n〉),m〉).

Let ∆ ` RD× RD, and let X ∈ dom(g ◦ δQ). We need to show that

δS(Ψ(〈X,∆(Φ(X))〉)) ∈ f(g(δQ(X))).

As discussed above, Y = Φg(X) is ML-random, so as the computation of Φ(X) proceeds, the
variable dY increases until it reaches its final value of n = rd(Y ). Z = Φf (Ψg(〈X,n〉)) is also
ML-random, so once dY reaches rd(Y ), either dZ ≥ rd(Z) already, in which case dZ never
changes again, or dZ < rd(Z), in which case dZ increases until it reaches its final value of rd(Z).
Thus Φ(X) = 〈Y,W 〉, where Y = Φg(X) and W = σaY for some string σ. W is ML-random
because Y is ML-random, and the construction ensures that σ satisfies [σ] ⊆ Ui for all i < rd(Z),
which implies that rd(W ) ≥ rd(Z).

As Φ(X) = 〈Y,W 〉 ∈ dom(∆) and ∆ ` RD × RD, we have that ∆(Φ(X)) = 〈n,m〉, where
n = rd(Y ) and m = rd(W ) ≥ rd(Z). Thus δR(Ψg(〈X,n〉)) ∈ g(δQ(X)) ⊆ dom(f). Thus
Ψg(〈X,n〉) ∈ dom(f ◦ δR). Thus

δS(Ψf (〈Ψg(〈X,n〉),m〉)) ∈ f(δR(Ψg(〈X,n〉))) ⊆ f(g(δQ(X))).

As

Ψ(〈X,∆(Φ(X))〉) = Ψ(〈X, 〈n,m〉〉) = Ψf (〈Ψg(〈X,n〉),m〉),
we have the desired δS(Ψ(〈X,∆(Φ(X))〉)) ∈ f(g(δQ(X))). �

Remark 5.10. At this point it is natural to ask whether the strong Weihrauch analog of
Theorem 5.9 holds, that is, whether LAY ∗s LAY ≤sW LAY. The answer is yes, but for trivial
reasons: as we show below, the composition of every two functions f, g ≤sW LAY has empty
domain, which implies that the strong Weihrauch degree of LAY ∗s LAY equals that of the
nowhere-defined function, and the latter is minimum in the strong Weihrauch degrees.

Consider a function f : (R, δR)⇒ (S, δS) that is ≤sW LAY. We show that no Y ∈ dom(f ◦ δR)
is computable. Let Φ and Ψ witness that f ≤sW LAY, and let Γ ` LAY. If Y ∈ dom(f ◦ δR), then
δS(Ψ(Γ(Φ(Y )))) must be defined. This means that Γ(Φ(Y )) must be defined, so Φ(Y ) must be
in MLR. Thus Y cannot be computable because if it were then Φ(Y ) would be computable as
well, which would contradict its ML-randomness. Now consider a function g : (Q, δQ)⇒ (R, δR)
that is ≤sW LAY, let Φ and Ψ witness that g ≤sW LAY, and let Γ ` LAY. Let x ∈ Q, let
X be such that δQ(X) = x, and let Y = Ψ(Γ(Φ(X))). Note that Y is computable because
Γ(Φ(X)) is simply (the characteristic function of) a number. Observe that δR(Y ) ∈ g(x) but
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that δR(Y ) cannot be in dom(f) because then the computable Y would be in dom(f ◦ δR), a
contradiction. Thus for no x ∈ Q is g(x) ⊆ dom(f), and therefore dom(f ◦ g) = ∅.

Closed choice principles (see Brattka and Gherardi [4]) have become important benchmarks in
the Weihrauch degrees. We now relate LAY to CN, the closed choice principle on ω (the subscript
on ‘CN’ is ‘N’ instead of ‘ω’ just to match the notation established in previous studies).

Definition 5.11. CN : ⊆ ωω ⇒ ω is the multi-valued function whose domain is {f ∈ ωω :
∃n∀k(f(k) 6= n+1)} and is defined by CN(f) = ω\{n : ∃k(f(k) = n+1)} for every f ∈ dom(CN).

The intuition behind the definition of CN is that an f ∈ dom(CN) codes the complement of
a non-empty subset of ω and that, given such an f , CN(f) must produce a member of the set
that f codes. (The reason for ‘n+ 1’ instead of ‘n’ in the definition is to allow the constantly 0
function to code ω.) We show that although CN is strictly stronger than LAY, the two degrees
become Weihrauch-equivalent when the inputs of CN are attached to ML-random sets.

Proposition 5.12. LAY ≤sW CN and CN �W LAY.

Proof. Fix a universal ML-test U . For RD ≤sW CN, let pi denote the ith prime for each
i ∈ ω. Compute Φ and Ψ as follows. In the computation of Φ(X), ‘enumerate n’ means set
Φ(X)(k) = n+ 1, where k is least such that Φ(X)(k) has not yet been defined. (The discrepancy
between n and n+ 1 here reflects the discrepancy between n and n+ 1 in the definition of CN.)

Given X ∈ 2ω, Φ(X) begins by enumerating all numbers that are not p0 while searching for a
stage at which X enters U0. When such a stage is found, Φ(X) finds the least n such that pn1 is
greater than all numbers it has enumerated so far, stops its current enumeration, and begins
enumerating all numbers that are not pn1 while searching for a stage at which X enters U1. When
such a stage is found, Φ(X) continues this pattern by finding the least n such that pn2 is greater
than all numbers it has enumerated so far, stopping its current enumeration, and beginning an
enumeration of all numbers that are not pn2 while searching for a stage at which X enters U2,
and so on. Ψ(n) is the least i such that pi divides n.

If X ∈ MLR, then the CN-instance coded by Φ(X) is a singleton of the form {pni }, where
i = rd(X). Hence Φ and Ψ witness that RD ≤sW CN.

To see that CN �W LAY, observe that there are computable elements f ∈ dom(CN), and, for
such an f , if Φ if is a Turing functional and Φ(f) is defined, then Φ(f) is computable and hence
not in dom(Γ) = MLR for any realizer Γ of LAY. �

Thus in the strong Weihrauch degrees we have that LAY <sW RD <sW CN, and in the
Weihrauch degrees we have that LAY ≡W RD <W CN. We note that the proof of Proposition 5.12
in fact shows that LAY ≤sW UCN, where UCN is the unique choice principle on ω as defined by
Brattka, de Brecht, and Pauly [3].

The reason that CN ≤W LAY fails is that CN has instances that cannot compute ML-random
sets. One may consider this an unsatisfactory answer and wonder whether in the presence of
randomness the separation between both principles goes away. The first result in this direction
is by Brattka, Gherardi and Hölzl [7] who show that LAY ∗MLR ≡W CN ∗MLR. In fact, it is
sufficient to “tag” every input to CN with an additional ML-random set to obtain Weihrauch
equivalence, as we can see in the following proposition. Here, idMLR is the identity function on
the domain MLR.

Proposition 5.13. LAY ≡W CN × idMLR.

Proof sketch. We see that LAY ≤W CN × idMLR by using the reduction from Proposition 5.12
and by passing along the given LAY instance as the input to the idMLR side of CN × idMLR.

For CN× idMLR ≤W LAY, fix a universal ML-test U . For any function f : ω → ω and any s ∈ ω,
let as(f) be the least number n such that (∀k ≤ s)(f(k) 6= n+ 1). Φ(〈f,X〉) copies the bits of
X while checking for each s whether as(f) = as+1(f). At stages s for which as(f) = as+1(f),
Φ(〈f,X〉) appends a string to its output to ensure that rd(Φ(〈f,X〉)) ≥ s+ 1. Then Φ(〈f,X〉)
restarts outputting the bits of X from the beginning. Ψ(〈〈f,X〉, s〉) is 〈as(f), X〉. If 〈f,X〉 is
a CN × idMLR-instance, then Φ(〈f,X〉) is a ML-random sequence of the form σaX where, for
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any s ≥ rd(σaX), as(f) is the least n such that n + 1 /∈ ran(f). Thus if s ≥ rd(σaX), then
Ψ(〈〈f,X〉, s〉) = 〈as(f), X〉 ∈ (CN × idMLR)(〈f,X〉). �

Remark 5.14. We thank Davie, Fouché, and Pauly [9] for pointing us to the correct statement
of Proposition 5.13. They also independently obtained Proposition 5.13, and their statement of
it is much less cumbersome than our original statement was. In fact, Davie, Fouché, and Pauly
derive many results in this section from Proposition 5.13, including Theorems 5.4 and 5.9 and
Proposition 5.13.

The next pair of results identify the complexity of sets whose characteristic functions can be
reduced to LAY when restricted to MLR. The characteristic function of any ∆0

2 set restricted to
MLR is ≤W LAY, but there is a Σ0

2 set whose characteristic function restricted to MLR is not
≤W LAY. This contrasts with the complexity of sets whose characteristic functions are layerwise
computable, as we see in Section 6.

Theorem 5.15. If A ⊆ 2ω is ∆0
2, then χA � MLR ≤W LAY.

Proof. Let A ⊆ 2ω be ∆0
2, and let (Ti)i∈ω and (Si)i∈ω be two uniformly computable sequences

of subtrees of 2<ω such that A =
⋃
i∈ω[Ti] and 2ω \ A =

⋃
i∈ω[Si].

Fix a nested universal ML-test U . Given X ∈ 2ω, to compute Φ(X), first search for a string τ
such that [τ ] ⊆ U0, and output τ as the initial bits of Φ(X). Now start outputting the bits of X
while searching for an n such that X � n /∈ T0 ∪ S0. If such an n is found, let σ be the output of
Φ(X) so far, and search for a string τ such that [σaτ ] ⊆ U1. Append τ to the current output of
Φ(X) (so that it becomes σaτ), and restart outputting the bits of X from the beginning. Now
search for an n such that X � n /∈ T1 ∪ S1. Again, if such an n is found, let σ be the output of
Φ(X) so far, and search for a string τ such that [σaτ ] ⊆ U2. Append τ to the current output
of Φ(X) (so that it becomes σaτ), and restart outputting the bits of X from the beginning.
Continue in this way, now searching for an n such that X � n /∈ T2 ∪ S2, and so on. To compute
Ψ(〈X, i〉), search for the least n such that either (∀j ≤ i)(X � n /∈ Tj) or (∀j ≤ i)(X � n /∈ Sj).
If (∀j ≤ i)(X � n /∈ Tj), then output 0; and otherwise output 1.

We show that Φ and Ψ witness that χA � MLR ≤W LAY. Let X ∈ MLR. Note that X
is in exactly one of

⋃
i∈ω[Ti] and

⋃
i∈ω[Si]. So let k be least such that X ∈ [Tk]4[Sk]. Then

Φ(X) = σaX for a σ with [σ] ⊆ Uk. Thus Φ(X) is ML-random with rd(Φ(X)) ≥ k. Now let
i ≥ rd(Φ(X)) and consider Ψ(〈X, i〉). If X ∈ A, then X ∈

⋃
j≤i[Tj ] but X /∈

⋃
j≤i[Sj ] (because

i ≥ rd(Φ(X)) ≥ k). In this case, Ψ(〈X, i〉) only finds an n such that (∀j ≤ i)(X � n /∈ Sj) and
correctly outputs 1. Similarly, if X /∈ A, then X ∈

⋃
j≤i[Sj ] but X /∈

⋃
j≤i[Tj ]. In this case,

Ψ(〈X, i〉) only finds an n such that (∀j ≤ i)(X � n /∈ Tj) and correctly outputs 0. �

Theorem 5.16. There is a Σ0
2 set A ⊆ 2ω such that χA � MLR �W LAY.

Proof. For the purposes of this proof, let (Ψj)j∈ω be a duplicate effective listing of all Turing
functionals. Fix a universal ML-test U . Define a computable function k : ω× 2<ω → ω by letting
k(σ, s) be the least i such that [σ] * Ui,s. For each n ∈ ω, let τn be the string 0n1. Let A be the
Σ0

2 set

A = {τ〈i,j〉aX : (∃s0)(∀s > s0)(Ψj(〈τ〈i,j〉aX, k(Φi,s(τ〈i,j〉
aX), s)〉) 6= 1)}.

We show that χA � MLR �W LAY. Suppose for a contradiction that Φi and Ψj witness that

χA � MLR ≤W LAY. Let X ∈ MLR. Then τ〈i,j〉
aX ∈ MLR, so Φi(τ〈i,j〉

aX) ∈ MLR as well.

Let d = rd(Φi(τ〈i,j〉
aX)), and let s0 be large enough to witness this. That is, let s0 be such

that (∀` < d)([Φi,s0(τ〈i,j〉
aX)] ⊆ U`,s0), and observe that (∀s > s0)(k(Φi,s(τ〈i,j〉

aX), s) = d).

Suppose that Ψj(〈τ〈i,j〉aX, d〉) = 0. Then, for all s > s0, Ψj(〈τ〈i,j〉aX, k(Φi,s(τ〈i,j〉
aX), s)〉) =

Ψj(〈τ〈i,j〉aX, d〉) = 0 6= 1. So, by definition of A, τ〈i,j〉
aX ∈ A, contradicting that Φi and Ψj

witness that χA � MLR ≤W LAY. Now suppose that Ψj(〈τ〈i,j〉aX, d〉) = 1. Then, for all s > s0,

Ψj(〈τ〈i,j〉aX, k(Φi,s(τ〈i,j〉
aX), s)〉) = Ψj(〈τ〈i,j〉aX, d〉) = 1. This implies that τ〈i,j〉

aX /∈ A, again
contradicting that Φi and Ψj witness that χA � MLR ≤W LAY. �
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Of course the complement of the set A from Theorem 5.16 is an example of Π0
2 set whose

characteristic function restricted to MLR is not ≤W LAY.

Remark 5.17. Theorem 5.15 can also be seen indirectly. First, if A ⊆ 2ω is ∆0
2, then χA ≤W CN.

This can be seen by a proof similar to that of Theorem 5.15: let (Ti)i∈ω and (Si)i∈ω be two
uniformly computable sequences of subtrees of 2<ω such that A =

⋃
i∈ω[Ti] and 2ω \A =

⋃
i∈ω[Si].

Given g ∈ 2ω, Φ(g) enumerates the set {n+ 1 : (∀i ≤ n)(g /∈ [Ti] ∪ [Si])}. Then, given n such
that n + 1 /∈ ran(Φ(g)), Ψ(〈g, n〉) decodes whether or not g is in A as it does in the proof of
Theorem 5.15. Notice that this argument also works in Baire space.

Second, if A ⊆ 2ω and χA ≤W CN, then χA � MLR ≤W LAY. To see this, observe that
LAY ≡W CN × idMLR by Proposition 5.13 and that χA � MLR ≤W CN × idMLR by using the
assumed reduction χA ≤W CN and the fact that inputs to χA � MLR must be in MLR. Thus if
A ⊆ 2ω is ∆0

2, then χA ≤W CN, so χA � MLR ≤W LAY.
The fact that χA ≤W CN for every ∆0

2 set A ⊆ 2ω is a special case of the fact that a function
between two computable metric spaces is effectively ∆0

2-measurable if and only if it Weihrauch-
reduces to CN [23]. Similarly, one can prove Theorem 5.16 by building a Σ0

2 set A ⊆ 2ω such
that for no ∆0

2 set B is A ∩MLR = B ∩MLR and appealing to the results of [23]. This is the
approach taken by Davie, Fouché, and Pauly [9].

6. Weihrauch-below LAY versus layerwise computability

It is not difficult to see that the restriction to MLR of a layerwise computable function is
Weihrauch-below LAY. With a slightly more involved argument we can also show that if A is any
layerwise semi-decidable set, then the characteristic function of A restricted to MLR is ≤W LAY.

Theorem 6.1. Let W be a universal ML-test, and let A ⊆ 2ω be W-layerwise semi-decidable.
Then χA � MLR ≤W LAY.

Proof. Let (Ui)i∈ω be a sequence of uniformly effectively open sets that witnesses the W-
layerwise semi-decidability of A. We show that χA � MLR ≤W RD ∗ RD, which suffices by
Theorems 5.4 and 5.9.

Let g : MLR→ MLR×ω be the function X 7→ 〈X, rdW(X)〉, and let f : MLR×ω → 2 be the
function

f(〈X,n〉) =

{
0 if X /∈ Un
1 if X ∈ Un.

For X ∈ MLR, we have that f(g(X)) = f(〈X, rdW(X)〉) = 1 if and only if X ∈ UrdW (X) if and
only if X ∈ UrdW (X) ∩ (2ω \ WrdW (X)) if and only if X ∈ A. Thus f ◦ g = χA � MLR. Clearly
g ≤W RD. It remains to show that f ≤W RD.

On input 〈X,n〉, Φ(〈X,n〉) outputs the bits of X while searching for a stage s with X ∈ Un,s.
When such an s is found, let σ be the output produced so far, search for a string τ such that
(∀i < s)([σaτ ] ⊆ Wi), and then output σaτaX. If no such s is ever found, then Φ(〈X,n〉) = X.
Let Ψ be the functional

Ψ(〈〈X,n〉,m〉) =

{
0 if X /∈ Un,m
1 if X ∈ Un,m.

Consider 〈X,n〉 with X ∈ MLR and n ∈ ω. If X ∈ Un, then this is witnessed at some stage s,
and Φ(〈X,n〉) is ML-random with rdW(Φ(〈X,n〉)) ≥ s. So, in this case, if m = rdW(Φ(〈X,n〉)),
then Ψ(〈〈X,n〉,m〉) = 1. On the other hand, if X /∈ Un, then Ψ(〈〈X,n〉,m〉) = 0 for every m.
Thus Φ and Ψ witness that f ≤W RD. �

Remark 6.2. If A is effectively open, then A is layerwise semi-decidable and hence χA �
MLR ≤W LAY by either Theorem 5.15 or Theorem 6.1. Of course, there are examples of effectively
open sets that are not layerwise decidable. In fact, Hoyrup and Rojas ([15] Proposition 6) prove
that a layerwise semi-decidable set A ⊆ 2ω is layerwise decidable if and only if λ(A) is computable.
Consider then a non-empty Π0

1 set T ⊆ MLR. By [20, Theorem 3.2.35], λ(T ) is not computable.
Thus the effectively open set A = 2ω \ T is not layerwise decidable because its measure is
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1− λ(T ), which is not computable. T itself is an example of an effectively closed set that is not
layerwise semi-decidable.

Corollary 6.3. The class of layerwise computable functions is strictly smaller than the class of
functions whose restrictions to MLR are Weihrauch-reducible to LAY. The class of layerwise
semi-decidable sets is strictly smaller than the class of sets whose characteristic functions
restricted to MLR are Weihrauch-reducible to LAY. Hence Weihrauch reducibility to LAY does
not characterize layerwise computability or even layerwise semi-decidability.

Proof. It is easy to see that if f is layerwise computable, then f � MLR ≤W LAY. Theorem 6.1
states that if A is layerwise semi-decidable, then χA � MLR ≤W LAY. For strictness, let T be
an effectively closed yet not layerwise semi-decidable set as discussed in Remark 6.2. Then
χT � MLR ≤W LAY by Theorem 5.15 because T is ∆0

2, but χT is not layerwise computable and
T is not layerwise semi-decidable. �

Remark 6.4. Let U be an optimal ML-test. Then by Theorems 4.5 and 5.4, rdU is another
example of a function defined on MLR that is ≤W LAY but is not layerwise computable.

With the help of Theorem 5.15 and the following (surely known) lemma, we also see that
Weihrauch reducibility to LAY does not characterize exact layerwise computability.

Lemma 6.5. If T ⊆ 2ω is an effectively closed set of positive measure, then there is an effectively
open set A ⊆ 2ω such that A ∩ T is not closed.

Proof. If A∩T were closed, then it would be compact, A would be an open cover of A∩T , and,
by compactness, A ∩ T would be covered by the union of some finite collection of cones from A.
Thus it suffices to construct A so that no finite union of cones from A covers A ∩ T .

Let T ⊆ 2<ω be a computable tree such that [T ] = T . Let n0 be such that 2−n0 ≤ λ(T )/4.
The goal is to enumerate into A, for each n ≥ n0, the cone [σ] for the leftmost σ ∈ 2n such that
(i) [σ]∩ T 6= ∅ and (ii) [σ] * [τ ] for every shorter τ where [τ ] was enumerated into A. Of course,
as T shrinks, it could happen that we enumerated a σ of length n at some stage s because we
observed [σ] ∩ Ts 6= ∅; but that later it turns out that [σ] ∩ T = ∅, that is, that (i) is violated
for σ. In this case we need to enumerate a new string σ′ of length n to replace σ. Enumerating
this new σ′ risks violating condition (ii) for some longer τ that was previously enumerated (that
is, we could have [τ ] ⊆ [σ′]); in such cases we will also need to replace τ by a new τ ′ of the same
length. Further chain reactions of the same type could occur, and need to be handled by us.

Let us make this more formal. For the purpose of this proof, for any σ ∈ 2<ω, let σ+ denote
the string immediately to the right of and of equal length as σ. At stage s = 〈i, t〉, first check
whether in the construction so far a cone [σ] for a σ of length n0 + i has been enumerated into
A. If not, let σ be leftmost in 2n0+i such that [σ] * [τ ] for all τ with [τ ] ⊆ A, and enumerate [σ]
into A.

If yes, then choose the rightmost such σ. Now check (1) whether σ � τ for a τ with [τ ] ⊆ A
and (2) whether there is an extension of σ of length s in T . If (1) fails and (2) holds, then σ
is still the leftmost string of length n0 + i meeting conditions (i) and (ii) at this stage, so do
nothing. Otherwise, enumerate [σ+] into A.

A new cone [σ+] is enumerated into A only if either [σ] was covered by a [τ ] ⊆ A for a shorter τ
or if we discover that [σ] ∩ T = ∅. Thus at every stage, for each n ≥ n0, A contains at most one
cone [σ] such that σ ∈ 2n, [σ]∩T 6= ∅, and [σ] * [τ ] for all shorter τ with [τ ] ∈ A. Thus, at each
stage, λ(A ∩ T ) ≤

∑
n≥n0

2−n = 2−n+1 ≤ λ(T )/2. From this it follows that the construction of

A is well-defined (it is always possible to find the required [σ]’s to enumerate into A) because A
never covers T . Similarly, we see that no finite union of cones from A covers A ∩ T : for any
finite set of cones {[τi] : i < m} enumerated into A, A eventually enumerates a cone [σ] such
that σ is to the right of each of the τi and [σ] ∩ T 6= ∅. �

Theorem 6.6. Fix a universal ML-test U . Then the class of exactly U-layerwise computable
functions is strictly smaller than the class of functions whose restrictions to MLR are Weihrauch-
reducible to LAY. Hence Weihrauch reducibility to LAY does not characterize exact U-layerwise
computability.
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Proof. It is easy to see that the restriction to MLR of any exactly layerwise-computable function
is Weihrauch-reducible to RD. Then, by appealing to the fact that RD ≡W LAY from Theorem 5.4,
we see that if f is exactly U-layerwise computable, then f � MLR ≤W LAY.

For strictness, we show that there is a set B ⊆ 2ω such that χB is not exactly U-layerwise
computable yet satisfies χB � MLR ≤W LAY. Let i be least such that Ti = 2ω \ Ui 6= ∅, and note
that (∀X ∈ Ti)(rd(X) = i). By Lemma 6.5, let A be an effectively open set such that B = A∩Ti
is not closed.

Then χB is not exactly U -layerwise computable, but χB � MLR ≤W LAY: Theorem 5.15 tells
us that χB � MLR ≤W LAY because B is ∆0

2. Suppose for a contradiction that Φ witness that
χB is exactly U-layerwise computable. Let S = {X ∈ Ti : Φ(X)(i) 6= 0}. Then S is closed.
Moreover, S = B. This is because if X ∈ Ti, then rd(X) = i, so Φ(X)(i) 6= 0 if and only if
Φ(X)(i) = 1 if and only if X ∈ B. This contradicts that B is not closed. �
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